Ferriero Engineering, Inc.

STORMWATER MANAGEMENT REPORT

FOR

PRELIMINARY & FINAL SITE PLAN

'DUNKIN'

LOT 64 Block 28005

TOWNSHIP OF MONTGOMERY SOMERSET COUNTY, NEW JERSEY

September 2021

Prepared by:

. .

Paul W. Ferriero, P.E., CME N.J.P.E. Lic. No. 32978

TABLE OF CONTENTS

Page

1.	Project Description		3
2.	Soils		3
3.	Stormwater Analysis	Methodology	3
4.	Stormwater Quality		4
5.	Stormwater Recharge	8	4
5.	Stormwater Quantity		4
7.	Stormwater Collection	on System	4
7.	Summary and Conclu	usions	5
	Appendix A	- USGS Map - USDA Soil Survey Map - FEMA Map	
	Appendix B	- Pre-Development Conditions Hydrographs	

- Appendix C- Peak Flow Rate Reduction CalculationsAppendix D- Post Development Conditions Hydrographs
- Appendix E Basin Routing Analysis
- Appendix F Stormwater Collection and Conveyance Calculations
- Appendix G Stormfilter Sizing Calculations Stormfilter by Contech Standard Detail
- Appendix H Drainage Area Maps

1. Project Description

This project proposes the construction of a new Dunkin Coffee, Espresso and Donut shop within the Township of Montgomery at the northeastern quadrant of the intersections of Route 206 and the Georgetown-Franklin Turnpike. The site has been previously developed and consists of a boarded-up brick building, both pavement and concrete driveways, concrete islands and lighting. The site has not been in service for many years and is in disrepair. The proposed construction will provide for a new 1,830sf building, 11 parking spaces, room for stacking 16 vehicles for the drive-up window and related infrastructure. Per the NJDEP GEOWEB, there are no wetlands located within 300' of the parcel, there are no streams within 300' of the parcel and the parcel is located within Zone X, minimal flood area according to the FEMA flood map.

A copy of the USGS Quadrangle Map and FEMA map with the project area depicted on it has been included in Appendix A.

2. Soils

The developable area of the subject parcel is characterized by soils identified by the United States Department of Agriculture natural Sources Conservation Service (NRCS) Web Soil Survey, as Birdsboro silt loam complex, 2 to 6 percent slopes. These soils are described in the survey as being well drained and have a Hydrologic Soil Group (HSG) classification of 'B'.

A copy of the NRCS Soil Survey Map with the area depicted on it has been included in Appendix A.

3. Stormwater Analysis Methodology

The project results in a total disturbance of 0.62 acres and the construction of 0.039 acres (1,690 sf) new impervious coverage. The project does <u>not</u> meet the requirements of a "major development" as defined by NJAC 7:8. However, the project meets the definition of a Major Development, as defined in Section 16-5.2.f of the Montgomery Township Ordinance, for the disturbance exceeding 0.5 acres.

Stormwater runoff volumes and peak flow rates have been calculated using the NRCS Method and pipe flows have been calculated using the Rational Method for the existing and proposed conditions for the 2, 10, and 100-year storm events as outlined in Technical Release 55 (TR-55), Urban Hydrology for Small Watersheds. The stormwater analysis was performed utilizing Hydraflow Hydrographs Extension for AutoCAD Civil 3D (v10.3) based on the NOAA Type C IDF curves and coefficients. A minimum of 2 minutes time of concentration was utilized for the proposed hydrograph analyses in order to comply with the NOAA Type C storm events. The existing and proposed runoff conditions were determined through analysis of the change in land surface and applying the project disturbance limit as the drainage area boundary.

The project employs an underground detention system designed to retain the runoff from the site such that the reduction rates in the peak flow rate for the two-, ten- and 100-year storm events are met or exceeded as required by Section 16-5.2.n of the Montgomery Township Ordinance.

The stormwater management system on the site has been further designed to meet the Montgomery Township Ordinance requirements for stormwater runoff quality, contained in Section 16-5.2.k, through the use of Green Infrastructure Standards. The project proposes to meet the township standards through the use of a combination of manufactured treatment devices. The project employs the use of Filterra basins and Stormfilter basins by Contech Stormwater Solutions, Inc., which are both certified to 80% removal of total suspended solids.

Existing Condition:

The area to be redeveloped consists of pavement, concrete, the existing structure and small disconnected grass/gravel areas. The property was previously used as a gas and service station. A composite curve number of 78 was estimated based on the land cover present within the 19,154 sf (0.520 Ac.) drainage area boundary utilized for the existing condition analysis. The existing Tc was analyzed using the Kirpich method to calculate the time of concentration (Tc) to analyze runoff from the pre-developed area.

Proposed Condition:

The project will result in the creation of 1,690 sf of new impervious coverage within the drainage area utilized for the analysis. Due to lot constraints, the proposed parking lot expansion is directly connected to the stormwater detention system. The increase in runoff resulting from the proposed construction will be mitigated through the use of a subsurface stormwater detention system. Stormwater runoff will be collected, stored, and discharged at a control rate before being conveyed to the existing stormwater conveyance system located within the NJDOT right-of-way for U.S. Route 206. Existing drainage patterns will be preserved, post-development peak runoff rates will be reduced, and the paved area will be surrounded by proposed landscaping which will serve as a buffer to the adjacent properties.

4. Stormwater Quality:

For developments which propose an increase of greater than 10,890 sf (0.25 acres) of impervious surfaces, the NJDEP Stormwater management rules require stormwater management measures designed to reduce the postconstruction load of total suspended solids (TSS) from the Water Quality Storm (WQS) by 80% of the anticipated load from the developed site. This project proposes an increase in impervious surfaces of 1,690 sf (0.038 acres), and therefore the stormwater quality requirements of N.J.A.C. 7:8 are not applicable. Under Montgomery Township's Land Development Ordinance, Chapter 16, the Township has implemented Stormwater requirements for 'Minor' developments. Per subsection 16-5.2g7, "If the applicant is seeking subdivision or minor or major site plan approval, or approval for 'd' variances pursuant to N.J.S.A. 40:55D-70d or for 'c' variances for lot coverage", Stormwater Runoff Quality Standards apply. This project seeks site plan approval and disturbs an area greater then 0.50 acres, therefore township standards for Stormwater Runoff Quality apply.

Water quality will be improved by changing the type of 'Use' from a gas/service station use to a food serviceoriented business. This project also proposes to treat the stormwater runoff quality through the use of a combination of manufactured treatment devices. The project employs the Stormfilter structures manufactured by Contech Engineered Solutions, LLC and the 'FILTERRA' Bioretention systems. Both devices are certified to meet the required 80% reduction in total suspended solids. In addition, the FILTERRA systems complies with the Green Infrastructure requirements stipulated by the Ordinance.

5. Stormwater Recharge:

For developments which propose an increase of greater than 0.25 acres of impervious surfaces or propose to disturb greater than 1-acre of land, the NJDEP Stormwater management rules require stormwater management measures designed to maintain 100% of the pre-development annual average groundwater recharge in the post-developed state. This project proposes less than 10,890 sf of new impervious surface and proposes to disturb less than 1-acre of land for the construction of the proposed improvements. The stormwater recharge requirements of N.J.A.C. 7:8 are not applicable. However, the Montgomery Townships Stormwater Rules require groundwater recharge for projects that disturb more than 0.50 acres of land. This project does not incorporate groundwater recharge as the site is located within an area listed with groundwater contamination.

6. Stormwater Quantity:

Post-construction peak runoff rate reductions of 50 percent for the 2-year storm, 75 percent for the 10-year storm, and 80 percent for the 100-year storm are required for projects considered a "major development" as defined by NJAC 7:8. Since this project is not considered a "major development" as defined by NJAC 7:8, the project is not subject to the rate reductions required by the rules. However, discharge of stormwater runoff from the site will be conveyed to the NJDOT stormwater facilities, and per the townships Stormwater Ordinance, this project proposes to reduce the stormwater runoff by 50% for the 2-year design storm, 75% for the 10-year design storm and 80% reduction for the 100-year design storm. In order to comply with Township's regulations, stormwater management measures have been designed for the project to reduce the predevelopment peak runoff rates stated above for the post-constructed condition.

As shown on the drainage area map in Appendix D, a total contributory drainage area of 0.520 acres was utilized for the pre-development and post-development peak flow rate analysis. Peak runoff rates from the area to be disturbed must be maintained or reduced in the post-developed condition. The runoff rates have changed due to the use of the NOAA Type C storm event. The existing peak runoff rates, required reductions and proposed discharges from the drainage areas analyzed are summarized as follows:

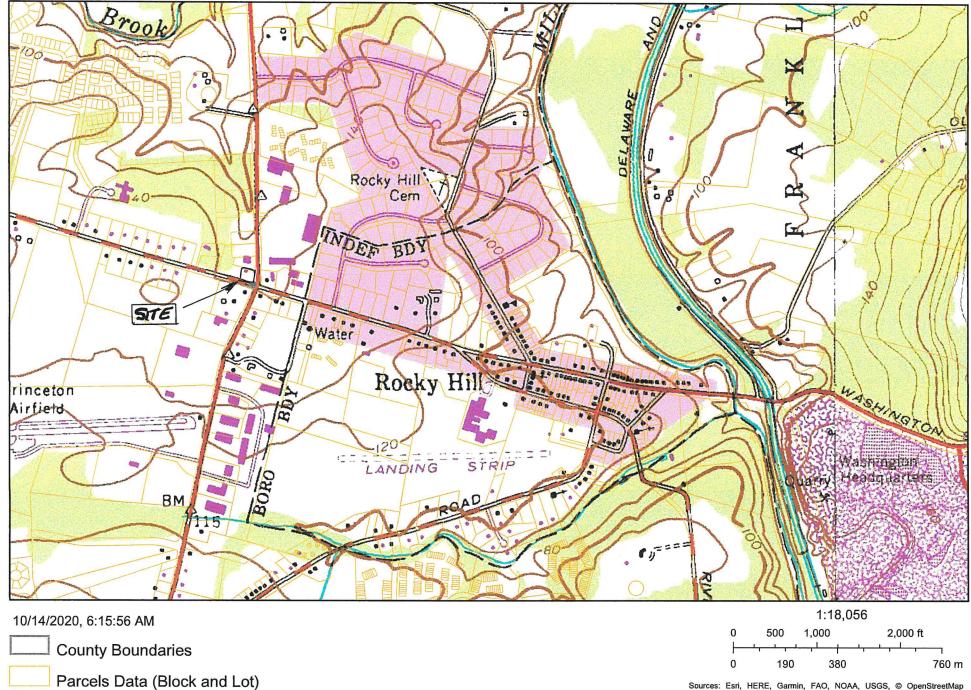
Storm Event	Pre-Development Peak Runoff (EDA) (cfs)	Reduction Factor	Required Reductions Peak Runoff (cfs)	Post-Development Peak Runoff (PDA) (cfs)
2 yr.	0.56	50%	0.28	0.17
10 yr.	1.48	75%	1.11	0.63
100 yr.	3.04	80%	2.43	2.11

7. Stormwater Collection System

Currently, runoff generated from the site flows un-detained, in a northeasterly direction to an inlet located along US Route 206. This inlet is a part of a NJDOT stormwater collection/conveyance system along US Route 206. The NJDOT stormwater conveyance system consists of 24" RCP with a slope of 3.5% where the proposed connection is located. The existing NJDOT conveyance system was previously analyzed which demonstrated that the runoff generated by this development will not greatly impact the system.

Calculations were performed for the proposed development which indicates the proposed onsite conveyance system is designed to adequately capture and convey the 2, 10 and 100 year storms safely. Four (4) inlets are proposed to capture the onsite stormwater runoff, while roof leaders will convey roof runoff directly to the proposed underground detention system. 12" RCP is specified for a portion of the onsite conveyance system due to burial constraints, the proposed pavement box depth and invert elevations to the proposed detention system. The detention system consists of 4 rows of 36" HDPE pipe and manhole OS-1, an outfall structure. The outfall structure is designed to reduce flow rates per the Town's Stormwater Ordinance of 50% for the 2-year design storm, 75% for the 10-year design storm and 80% for the 100-year design storm.

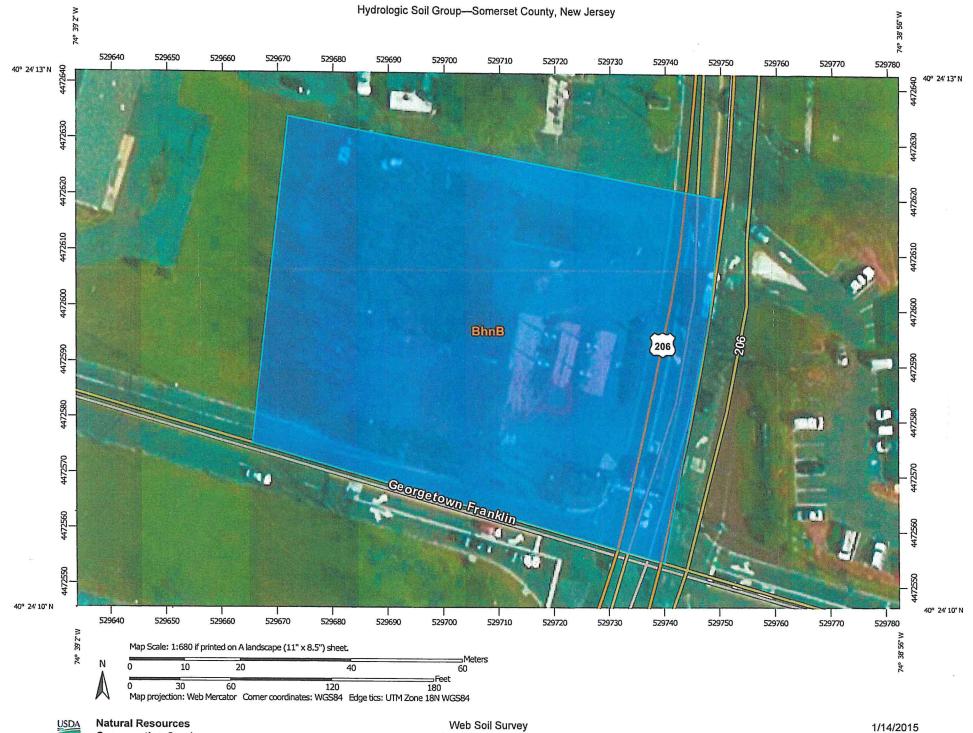
8. Summary and Conclusions:


The stormwater management controls for the project have been designed to mitigate the effects of the proposed construction on lot 64 in block 28010 through storage, discharge control and mitigation for TSS removal of runoff collected from the proposed development. The proposed stormwater underground detention system will result in the reduction of pre-construction runoff rates from the project area based on the analysis of the 2yr, 10yr, and 100yr storm events. The proposed stormwater controls ensure that there will be

no negative downstream impacts with respect to runoff quantity and suspended solids as a result of the proposed construction. The calculations indicate that the drainage system as designed does have adequate capacity to convey all of the storm events including the 100-year storm.

APPENDIX A

USGS MAP USDA SOILS MAP FEMA MAP


1270 US Route 206, Skillman, NJ

Sources: Esri, HERE, Garmin, FAO, NOAA, USGS, C OpenStreetMap

New Jersey Department of Environmental Protection

Esri Community Maps Contributors, Somerset County, NJ, State of New Jersey, Esri, HERE, Garmin, SafeGraph, INCREMENT P, METI/NASA, USGS, EPA, NPS, US Census Bureau, USDA | NJDEP | NJDEP, Bureau of Energy and Sustainability Edition 20190327 |

National Cooperative Soil Survey

Conservation Service

1/14/2015 Page 1 of 4

MAP LEGEND

	MAP LE	EGEND			MAP INFORMATION
Area of Ir	iterest (AOI) Area of Interest (AOI)		C		The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils			C/D		Warning: Soil Map may not be valid at this scale.
Soil Ra	ting Polygons		D		Enlargement of maps beyond the scale of mapping can cause
	A		Not rated or not available		misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting
and the second sec	A/D	Water Fea	tures Streams and Canals		soils that could have been shown at a more detailed scale.
	В				Plagge roly on the her code or code in the first
	B/D	Transport	ation Rails		Please rely on the bar scale on each map sheet for map measurements.
	с	~	Interstate Highways		Source of Map: Natural Resources Conservation Service
tight.	C/D				Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov
	D	~	US Routes		Coordinate System: Web Mercator (EPSG:3857)
	Not rated or not available	stad	Major Roads		Maps from the Web Soil Survey are based on the Web Mercator
Soil Ba	Soil Rating Lines		Local Roads		projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the
poor real	A	Backgrou			Albers equal-area conic projection, should be used if more accurate
الورينغور	A/D		Aerial Photography		calculations of distance or area are required.
~	В			a	This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
	= B/D				Soil Survey Area: Somerset County, New Jersey
	C				Survey Area Data: Version 12, Sep 24, 2014
	5 Bri				Soil map units are labeled (as space allows) for map scales 1:50,000
14 (A	C/D				or larger.
الويناعير	D				Date(s) aerial images were photographed: Mar 19, 2011-May 1,
هم . هر	Not rated or not available				2011
	ting Points				The orthophoto or other base map on which the soil lines were
	A				compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting
	A/D				of map unit boundaries may be evident.
	В				
	B/D				

Hydrologic Soil Group

Hydro	ologic Soil Group— Summary	/ by Map Unit — Som	erset County, New Jersey (N	IJ035)
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
BhnB	Birdsboro silt loam, 2 to 6 B percent slopes		1.2	100.0%
Totals for Area of Inter	rest	1.2	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

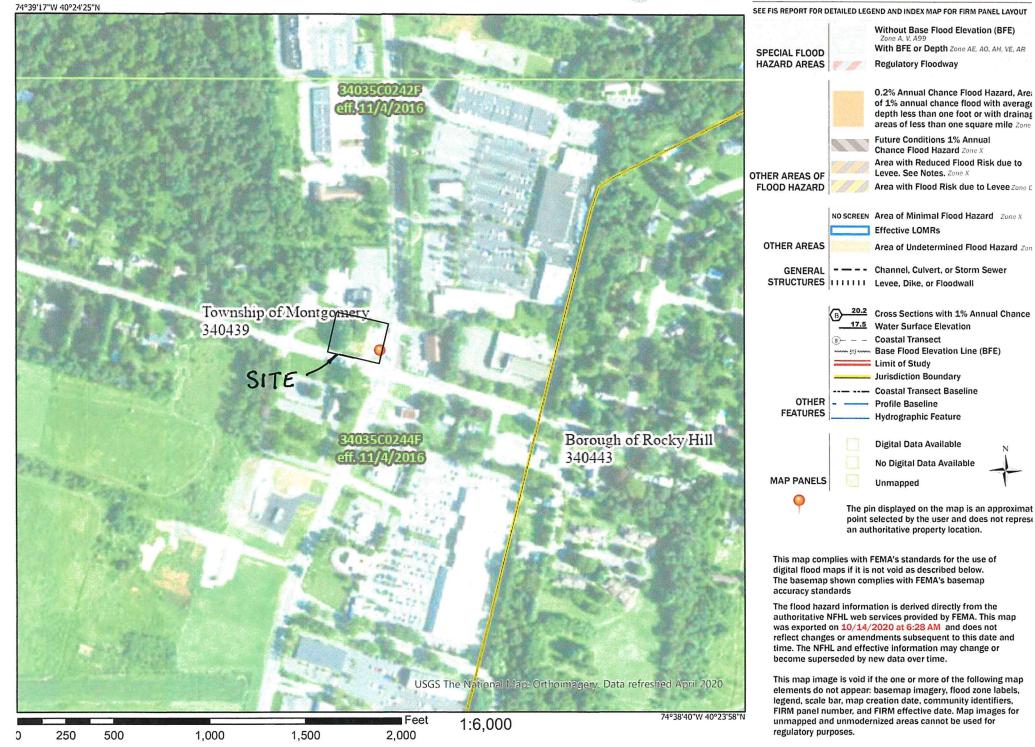
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

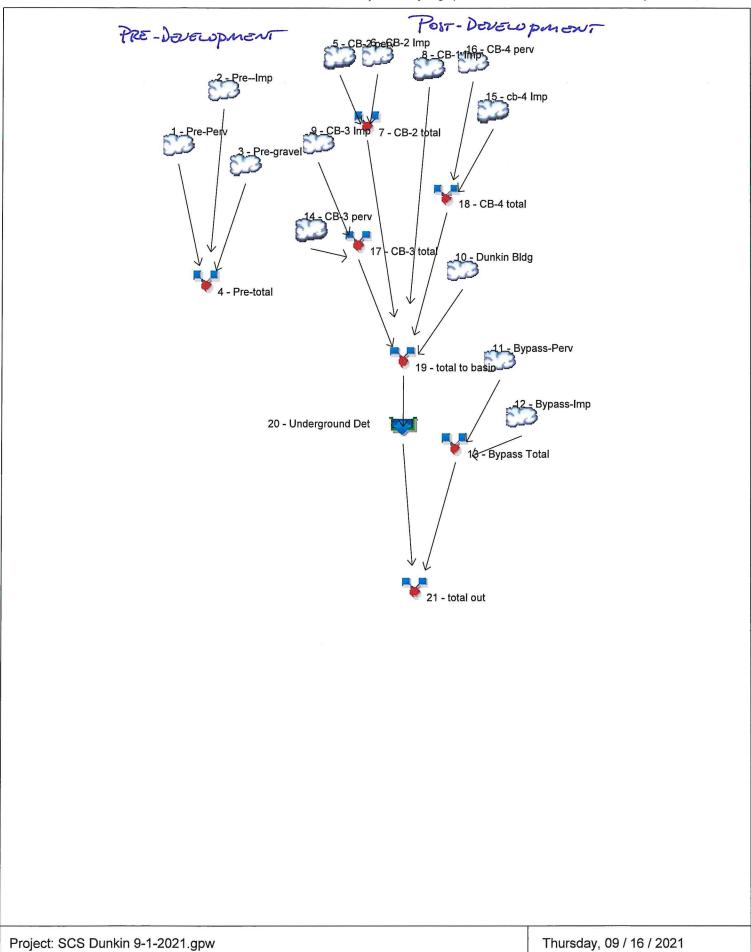
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

National Flood Hazard Layer FIRMette

Legend



APPENDIX B

PRE-DEVELOPED CONDITIONS HYDROGRAPHS

		35	50 1	70	77
	fair	35			
	good	reat contraction of the second second second	and the second		
Woods - grass combination	poor	57			
	fair	43			62
	good	32	The second se		
Woods	poor	45	and the second		
	fair	36	a second s		
	good	30	The start of the s	Den tel de la constante de la c	
Farmsteads	Come and the second	59	74	82 -	86
FULLY DEVELOPED URBAN AREAS (Veg E	Established)		1. 1. A. S.		
Open space (Lawns,parks etc.)		and the second second			
Poor condition; grass cover	< 50%	68			
Fair condition; grass cover	50% to 75 %	49			
Good condition; grass cove	r > 75%	39		74 -	80
Impervious Areas			\cap		
Paved parking lots, roofs, dr	iveways	98		98	98
Streets and roads				1-1-5-5	
Paved; curbs and storm s	ie)	98			
Paved; open ditches (w/rig	ght-of-way)	83			
Gravel (w/ right-of-way)		76			
Dirt (w/ right-of-way)		72	82	87	89
Urban Districts	Avg % impervious		11 10 10		
Commercial & business	85	89			
Industrial	72	81	88	91	93
Residential districts by average lot size	Avg % impervious				
1/8 acre (town houses)	65	77			
1/4 acre	38	61		and the second	
1/3 acre	30	57	In the second		
1/2 acre	25	54		and the second	
1 acre	20	51			
2 acre	12	46	65	77	82
User defined urban		**	**	**	**
DEVELOPING URBAN AREA (No Vegetatio	n)	and the second second	7.6	215 33	
Newly graded area (pervious	10	77	86	91	94
		0	0	0	0
		Total Ac	cres	0	
Maightad	Runoff Curve	Number (R	CN)	0	
vveighted	Runon Curve		<u> </u>		

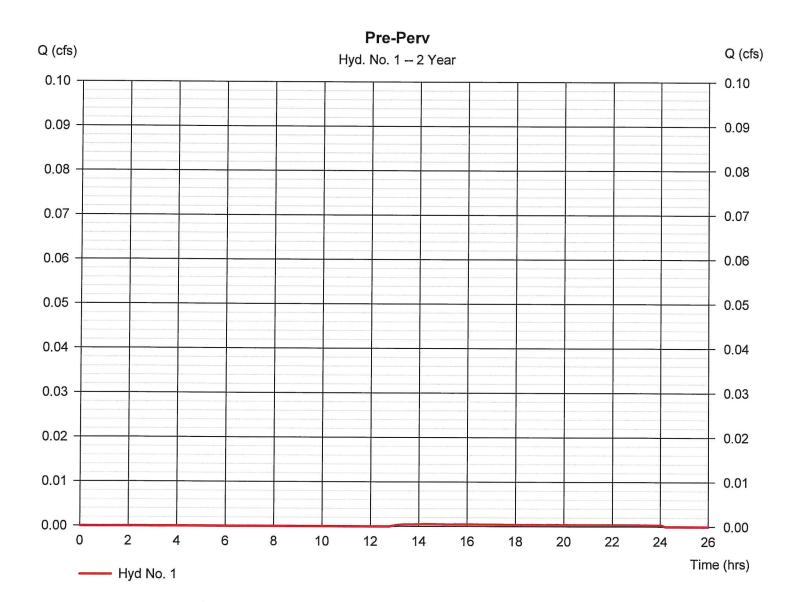
Watershed Model Schematic

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd.	Hydrograph	Inflow	Peak Outflow (cfs)						Hydrograph		
No.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff			0.001			0.106	0.236		0.450	Pre-Perv
2	SCS Runoff			0.501			1.150	1.554		2.106	PreImp
3	SCS Runoff			0.059			0.228	0.341		0.496	Pre-gravel
4	Combine	1, 2, 3		0.560			1.475	2.122		3.039	Pre-total
5	SCS Runoff			0.000			0.010	0.021		0.039	CB-2 perv
6	SCS Runoff			0.243			0.555	0.750		1.016	CB-2 Imp
7	Combine	5, 6		0.243			0.565	0.771		1.055	CB-2 total
8	SCS Runoff			0.056			0.128	0.173		0.234	CB-1 Imp
9	SCS Runoff			0.131			0.299	0.404		0.547	CB-3 Imp
10	SCS Runoff			0.065			0.148	0.201	: :	0.272	Dunkin Bldg
11	SCS Runoff			0.000			0.080	0.177		0.336	Bypass-Perv
12	SCS Runoff			0.037			0.085	0.115		0.156	Bypass-Imp
13	Combine	11, 12		0.037			0.153	0.275		0.467	Bypass Total
14	SCS Runoff			0.000			0.010	0.021		0.040	CB-3 perv
15	SCS Runoff			0.187			0.427	0.577		0.781	cb-4 Imp
16	SCS Runoff			0.000			0.008	0.018		0.034	CB-4 perv
17	Combine	9, 14,		0.131			0.308	0.425		0.587	CB-3 total
18	Combine	15, 16,		0.187			0.434	0.593		0.813	CB-4 total
19	Combine	7, 8, 10,		0.676			1.573	2.147		2.941	total to basin
20	Reservoir	17, 18 19		0.147			0.540	0.984		1.678	Underground Det
21	Combine	13, 20		0.169			0.629	1.210		2.105	total out
Proj	. file: SCS D	unkin 9-1-:	2021.gp	w					Thu	ursday, C	9 / 16 / 2021

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk $\ensuremath{\mathbb{R}}$ Civil 3D $\ensuremath{\mathbb{R}}$ by Autodesk, Inc. v2021

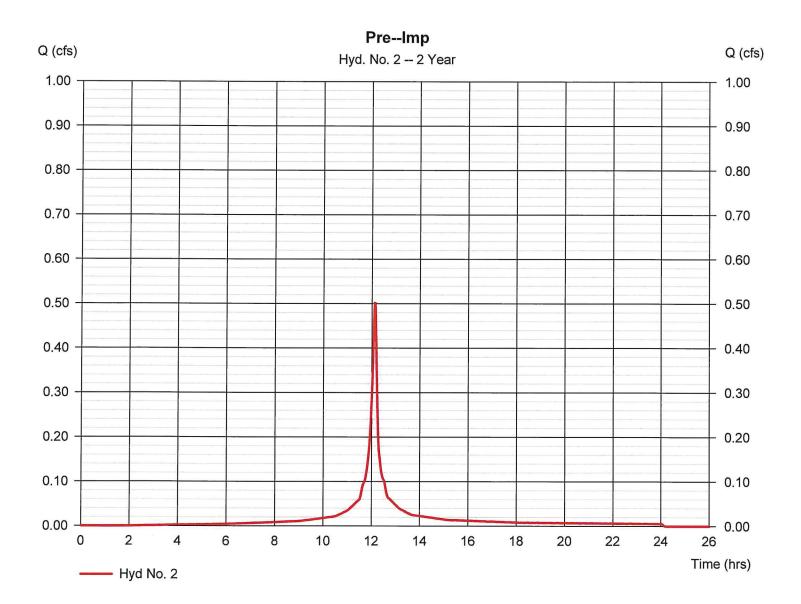

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.001	1	868	16				Pre-Perv
2	SCS Runoff	0.501	1	727	1,621				Pre-Imp
3	SCS Runoff	0.059	1	728	175				Pre-gravel
4	Combine	0.560	1	728	1,812	1, 2, 3			Pre-total
5	SCS Runoff	0.000	1	863	1				CB-2 perv
6	SCS Runoff	0.243	1	726	675				CB-2 Imp
7	Combine	0.243	1	726	677	5, 6			CB-2 total
8	SCS Runoff	0.056	1	726	156				CB-1 Imp
9	SCS Runoff	0.131	1	726	364				CB-3 Imp
10	SCS Runoff	0.065	1	728	222				Dunkin Bldg
11	SCS Runoff	0.000	1	871	11				Bypass-Perv
12	SCS Runoff	0.037	1	726	104				Bypass-Imp
13	Combine	0.037	1	726	115	11, 12			Bypass Total
14	SCS Runoff	0.000	1	865	1				CB-3 perv
15	SCS Runoff	0.187	1	726	520				cb-4 Imp
16	SCS Runoff	0.000	1	871	1				CB-4 perv
17	Combine	0.131	1	726	365	9, 14,			CB-3 total
18	Combine	0.187	1	726	521	15, 16,			CB-4 total
19 (Combine	0.676	1	726	1,940	7, 8, 10,			total to basin
20 F	Reservoir	0.147	1	741	1,939	17, 18 19	123.00	536	Underground Det
21	Combine	0.169	1	726	2,054	13, 20			total out
SCS	Dunkin 9-1-2	021.gpw			Return Pe	eriod: 2 Yea	ar	Thursday, 0	9 / 16 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

Pre-Perv

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip.	 SCS Runoff 2 yrs 1 min 0.140 ac 0.1 % KIRPICH 1.75 in 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution	 = 0.001 cfs = 14.47 hrs = 16 cuft = 61 = 198 ft = 8.54 min = Custom
		Distribution	= 8.54 min = Custom = 484

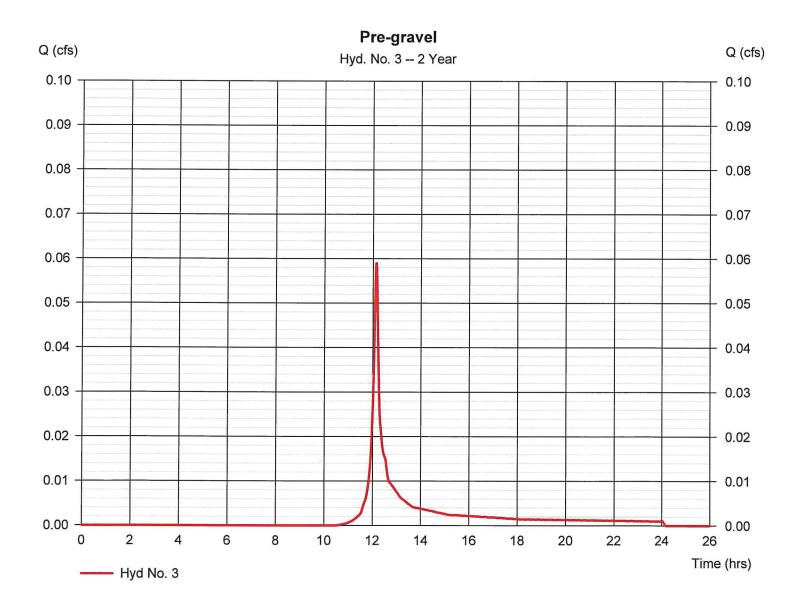


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 2

Pre--Imp

Hydrograph type	 SCS Runoff 2 yrs 1 min 0.300 ac 	Peak discharge	= 0.501 cfs
Storm frequency		Time to peak	= 12.12 hrs
Time interval		Hyd. volume	= 1,621 cuft
Drainage area		Curve number	= 98
Basin Slope	 = 0.1 % = KIRPICH = 1.75 in = Z:\Stormwater\NOAA_C_1-M 	Hydraulic length	= 178 ft
Tc method		Time of conc. (Tc)	= 7.87 min
Total precip.		Distribution	= Custom
Storm duration		II NSbdp e factor	= 484

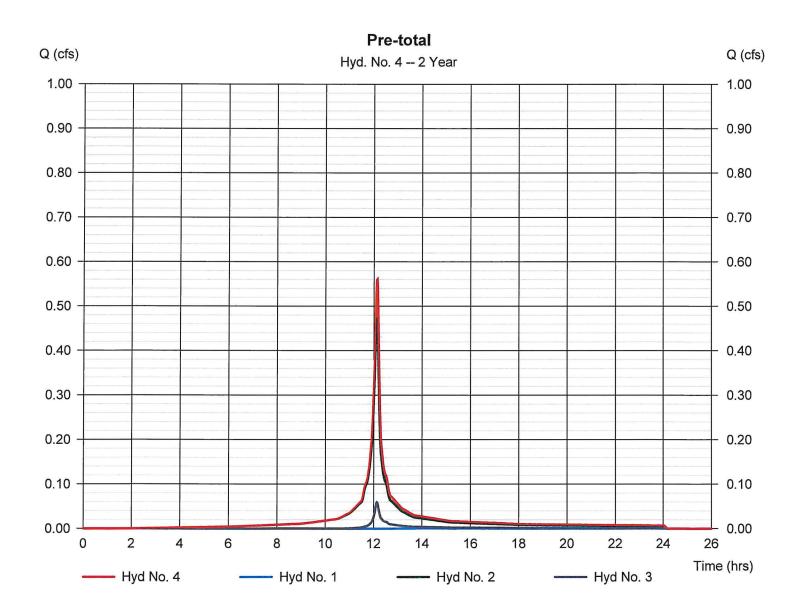

5

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

Pre-gravel

Hydrograph type	= SCS Runoff	Peak discharge	= 0.059 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 175 cuft
Drainage area	= 0.080 ac	Curve number	= 85
Basin Slope	= 0.1 %	Hydraulic length	= 178 ft
Tc method	= KIRPICH	Time of conc. (Tc)	= 7.87 min
Total precip.	= 1.75 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-N	IINSbdpe factor	= 484

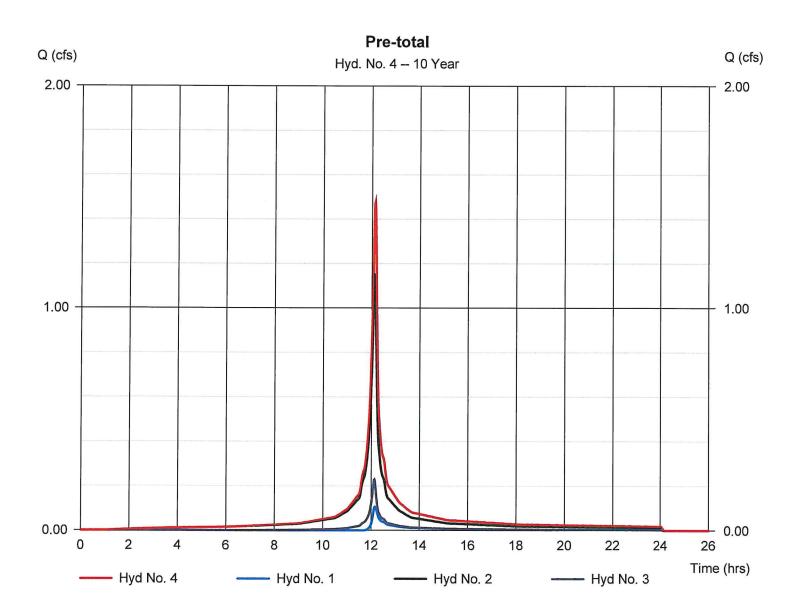


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

Pre-total

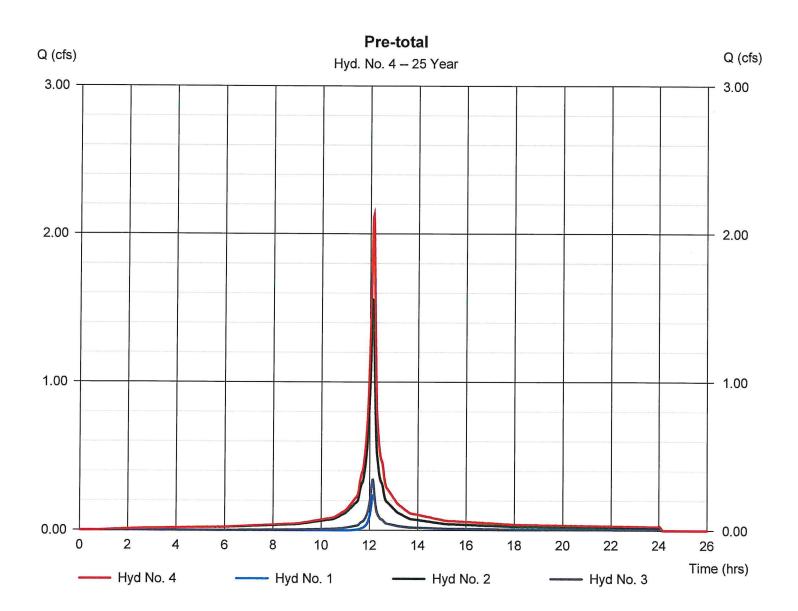
Inflow hyds. = 1, 2, 3 Contrib. drain. area = 0.520 ac	Hydrograph type Storm frequency Time interval Inflow hyds.	 Combine 2 yrs 1 min 1, 2, 3 	Peak discharge Time to peak Hyd. volume Contrib. drain. area	 = 0.560 cfs = 12.13 hrs = 1,812 cuft = 0.520 ac
--	---	--	---	--


7

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

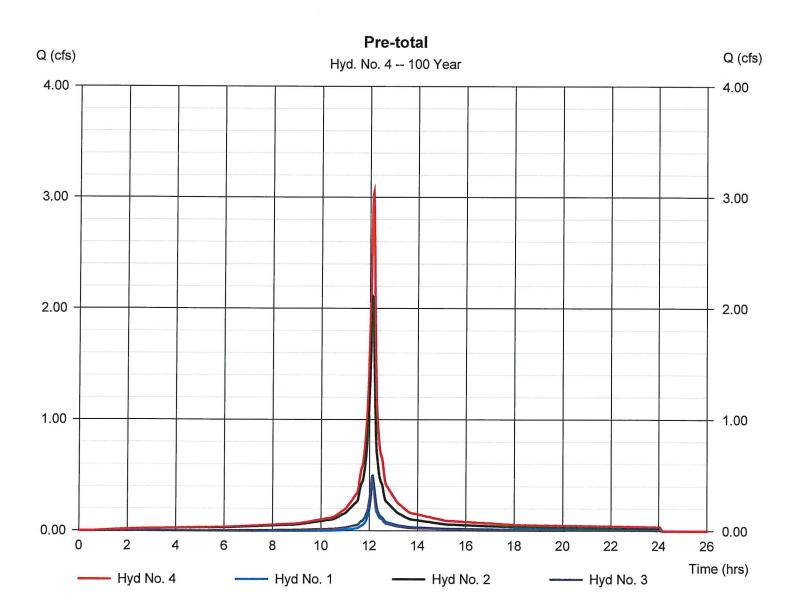
Pre-total


Hydrograph type	= Combine	Peak discharge	= 1.475 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 4,950 cuft
Inflow hyds.	= 1, 2, 3	Contrib. drain. area	= 0.520 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

Pre-total


57

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

Pre-total

Hydrograph type	= Combine	Peak discharge	= 3.039 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 10,209 cuft
Inflow hyds.	= 1, 2, 3	Contrib. drain. area	= 0.520 ac

Thursday, 09 / 16 / 2021

79

APPENDIX C

PEAK FLOW RATE REDUCTION CALCULATIONS

Paul W. Ferriero, PE, PP, CME, LEED AP, CFM Robert C. Brightly, PE, PP, CME Steven B. Bolio, PE, CME Mark S. Denisiuk, PE CME, LEED AP Joseph S. Kosinski, PG, CFM, LEED AP C. Richard Quamme, PE, CME Jess H. Symonds, PE

September 16, 2021

Montgomery 'Dunkin'

PEAK FLOW RATE REDUCTION CALCULATIONS

Analysis Point #1

2 Year Storm Event				
Drainage Area =	0.52	acres		
Disturbed Area =	0.51	acres		
Undisturbed Area =	0.01	acres		
Reduction Required =	0.5	(50%)		
2 YR Peak Flowrate =	0.56	cfs		
Target Flowrate =	0.28	cfs		
<u>10 Year Storm Event</u>				
Drainage Area =	0.52	acres		
Disturbed Area =	0.51	acres		
Undisturbed Area =	0.01	acres		
Reduction Required =	0.75	(25%)		
10 YR Peak Flowrate =	1.48	cfs		
Target Flowrate =	1.11	cfs		
100 Year Storm Event				
Drainage Area =	0.52	acres		
Disturbed Area =	0.51	acres		
Undisturbed Area =	0.01	acres		
Reduction Required =	0.8	(20%)		
100 YR Peak Flowrate =	3.04	cfs		
Target Flowrate =	2.28	cfs		

180 Main Street • P.O. Box 571 • Chester, NJ 07930 • 908-879-6209 • Fax: 908-879-6597
 17 Model Avenue • P.O. Box 577 • Hopewell, NJ 08525 • 609-466-0002 • Fax: 609-466-2008 mail@FerrieroEngineering.com

• • •

APPENDIX D

POST-DEVELOPED CONDITIONS HYDROGRAPHS

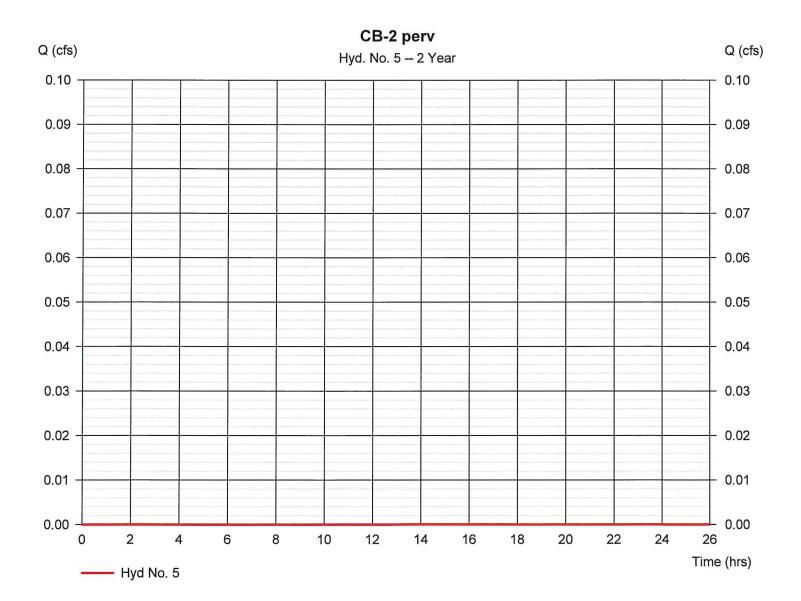
			Total A	cres	0	
			0	0	0	0
	Newly graded area (pervious		77	86	91	94
DEVELOPI	NG URBAN AREA (No Vegetation	n)				
	User defined urban		 A second sec second second sec	**	**	**
	2 acre	12	46			
	1 acre	20			79	
	1/2 acre	25	54			
	1/3 acre	30	57	and the second se		The state of the second second
	1/4 acre	38	61			
	1/8 acre (town houses)	65	77	85	90	92
Residential	districts by average lot size	Avg % impervious				
	Industrial	72	81			and the second second
Si Sur Diot	Commercial & business	85	89		94	95
Urban Distr		Avg % impervious	12	01		
	Dirt (w/ right-of-way)		72			
	Gravel (w/ right-of-way)	jii or may	76			
	Paved; open ditches (w/rig		83			
	Paved; curbs and storm s	:0)	98	98		98
	Paved parking lots, roofs, dr Streets and roads	IVEWAYS	90	30	30	90
Impervious		inowane	98	98)	98	
Imponious		1 - 7070	39	01		00
	Fair condition; grass cover Good condition; grass cove		39		79	SOUTH STORE Star
	Poor condition; grass cover		68			evenue ta relatere esta
Open space	e (Lawns,parks etc.)	< 50%	68		86	
	VELOPED URBAN AREAS (Veg E	Established)				
	Farmsteads		59	/4	82	86
		good	30	The second second second second		a second second
		fair	36	the States Million M. A.	73	The main state where
	Woods	poor	45		77	
		good	32		72	
		fair	43		76	The second s
	Woods - grass combination	poor	57	and the book of the second	82	
		good	30			
		fair	35	and the second second second		100 C 100 C 100 C 100 C

Weighted Runoff Curve Number (RCN)

0

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.001	1	868	16				Pre-Perv
2	SCS Runoff	0.501	1	727	1,621				PreImp
3	SCS Runoff	0.059	1	728	175				Pre-gravel
4	Combine	0.560	1	728	1,812	1, 2, 3			Pre-total
5	SCS Runoff	0.000	1	863	1				CB-2 perv
6	SCS Runoff	0.243	1	726	675				CB-2 Imp
7	Combine	0.243	1	726	677	5, 6			CB-2 total
8	SCS Runoff	0.056	1	726	156				CB-1 Imp
9	SCS Runoff	0.131	1	726	364				CB-3 Imp
10	SCS Runoff	0.065	1	728	222				Dunkin Bldg
11	SCS Runoff	0.000	1	871	11				Bypass-Perv
12	SCS Runoff	0.037	1	726	104				Bypass-Imp
13	Combine	0.037	1	726	115	11, 12			Bypass Total
14	SCS Runoff	0.000	1	865	1				CB-3 perv
15	SCS Runoff	0.187	1	726	520				cb-4 Imp
16	SCS Runoff	0.000	1	871	1				CB-4 perv
17	Combine	0.131	1	726	365	9, 14,			CB-3 total
18	Combine	0.187	1	726	521	15, 16,			CB-4 total
19	Combine	0.676	1	726	1,940	7, 8, 10, 17, 18			total to basin
20	Reservoir	0.147	1	741	1,939	19	123.00	536	Underground Det
21	Combine	0.169	1	726	2,054	13, 20			total out
scs	Dunkin 9-1-2	2021.gpw	,		Return F	Period: 2 Ye	ar	Thursday, (09 / 16 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

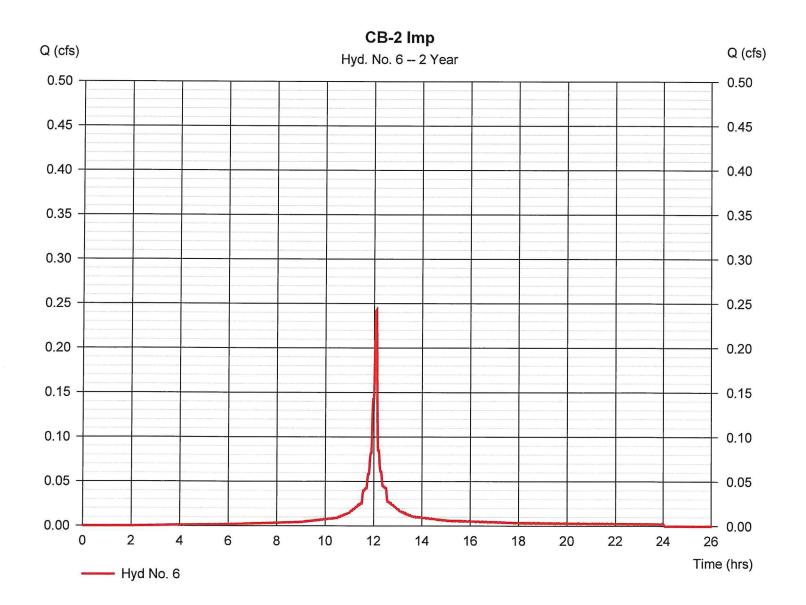
CB-2 perv

Hydrograph type Storm frequency Time interval	= SCS Runoff = 2 yrs = 1 min	Peak discharge Time to peak Hyd. volume	= 0.000 cfs = 14.38 hrs = 1 cuft
	= 0.010 ac		= 1 cuit = 61
Drainage area		Curve number	
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 2.83 min
Total precip.	= 1.75 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-M	IIN&bdpe factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

CB-2 perv

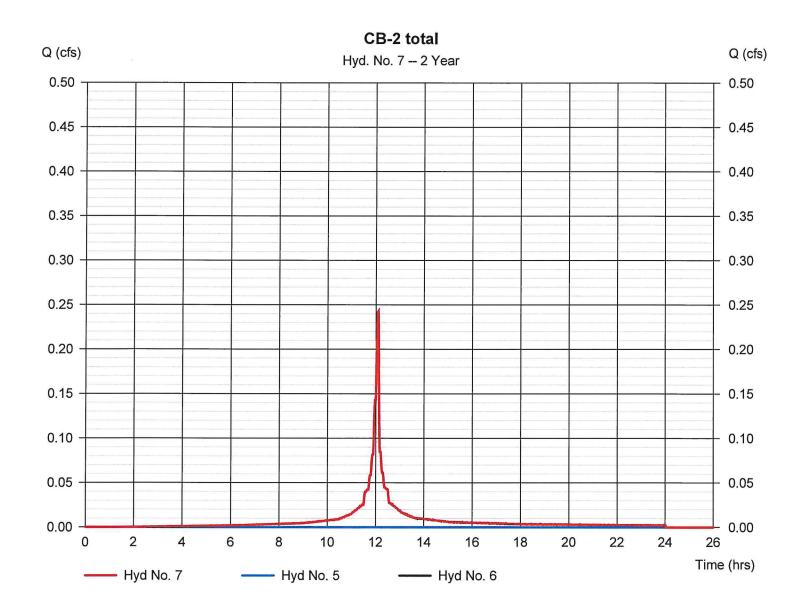

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>	
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 16.0 = 3.34 = 4.00		0.013 0.0 0.00 0.00		0.013 0.0 0.00 0.00			
Travel Time (min)	= 2.44	+	0.00	+	0.00	=	2.44	
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 81.00 = 3.00 = Paved =3.52		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00			
Travel Time (min)	= 0.38	+	0.00	+	0.00	=	0.38	
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00			
Flow length (ft)	({0})0.0		0.0		0.0			
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00	
Total Travel Time, Tc							2.83 min	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 6

CB-2 Imp

Hydrograph type	= SCS Runoff	Peak discharge	= 0.243 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 675 cuft
Drainage area	= 0.130 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 2.00 min
Total precip.	= 1.75 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA	_C_1-MINSbdpe factor	= 484

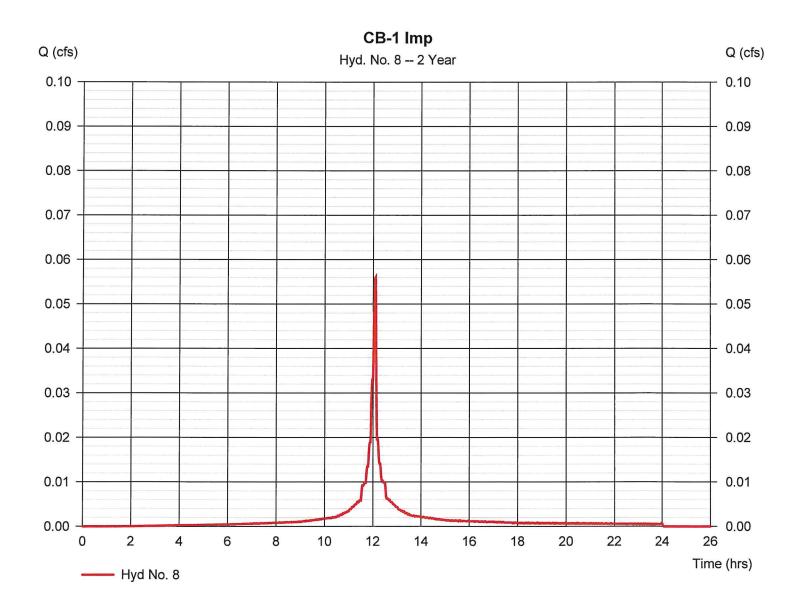


Thursday, 09 / 16 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 7

CB-2 total


Thursday, 09 / 16 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

CB-1 Imp

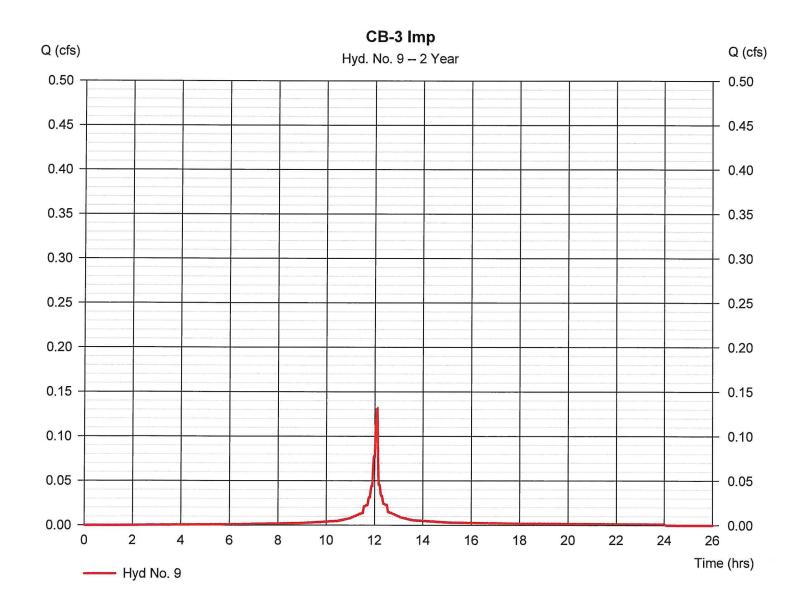
Hydrograph type	= SCS Runoff	Peak discharge	= 0.056 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 156 cuft
Drainage area	= 0.030 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 2.00 min
Total precip.	= 1.75 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-M	IINSbdpe factor	= 484
		•	

12

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

CB-1 Imp

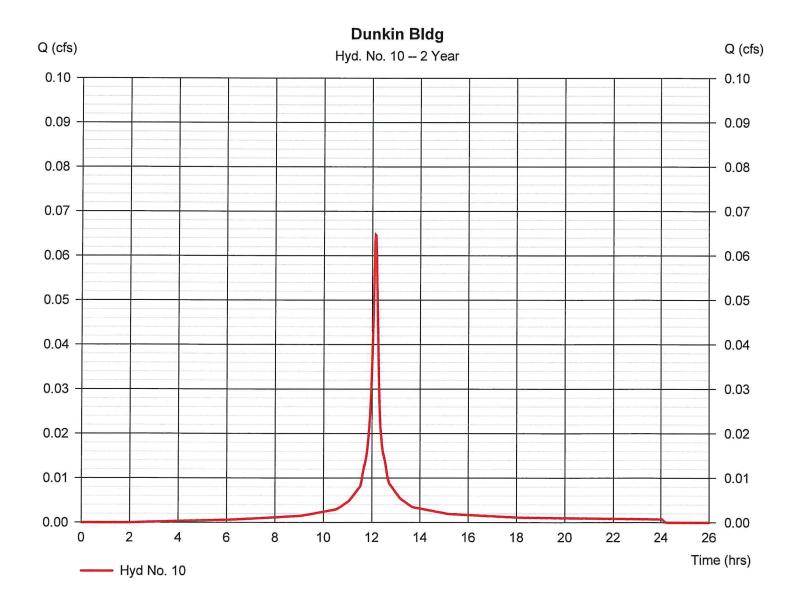

Description	A		B		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.013 = 15.0 = 3.34 = 1.00		0.013 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 0.39	+	0.00	+	0.00	=	0.39
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 196.00 = 1.00 = Paved =2.03		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.61	+	0.00	+	0.00	=	1.61
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 9

CB-3 Imp

Hydrograph type	= SCS Runoff	Peak discharge	= 0.131 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 364 cuft
Drainage area	= 0.070 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 2.00 min
Total precip.	= 1.75 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOA	A_C_1-MINSbdpe factor	= 484

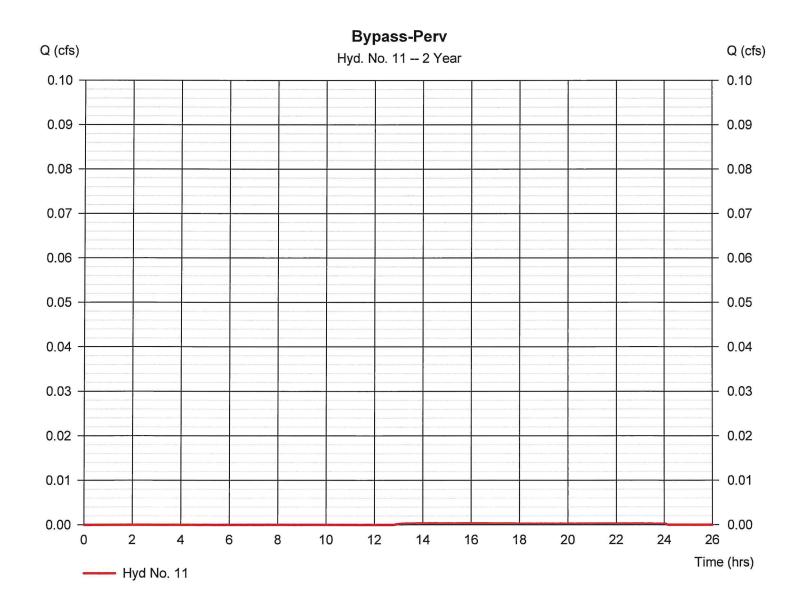


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

Dunkin Bldg

Hydrograph type Storm frequency Time interval Drainage area	 SCS Runoff 2 yrs 1 min 0.040 ac 	Peak discharge Time to peak Hyd. volume Curve number	 0.065 cfs 12.13 hrs 222 cuft 98
Drainage area Basin Slope Tc method Total precip.	= 0.040 ac = 0.0 % = User = 1.75 in	Curve number Hydraulic length Time of conc. (Tc) Distribution	= 98 = 0 ft = 10.00 min = Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-M		= 484


15

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

Bypass-Perv

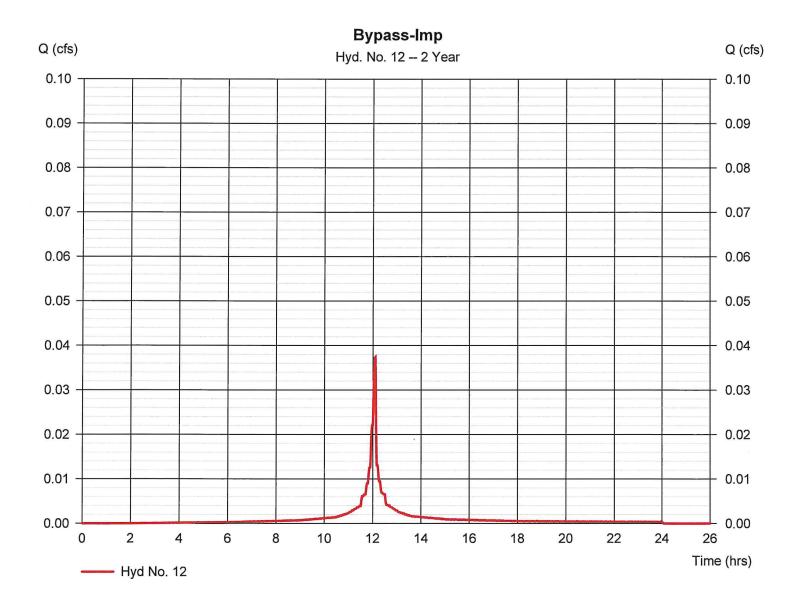
Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= 14.52 hrs
Time interval	= 1 min	Hyd. volume	= 11 cuft
Drainage area	= 0.100 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 7.80 min
Total precip.	= 1.75 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-M	11NSbdpe factor	= 484
		·	

TR55 Tc Worksheet

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

Bypass-Perv

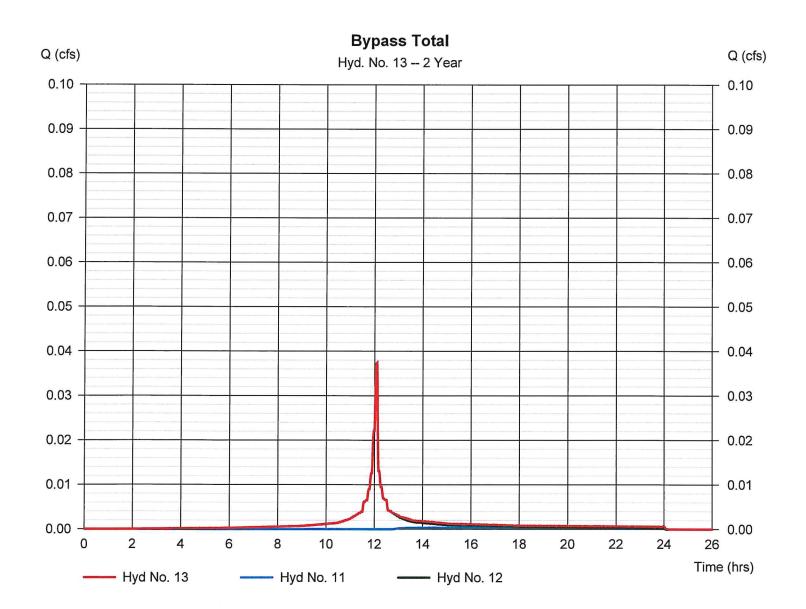

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 77.0 = 3.34 = 5.20		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 7.73	+	0.00	+	0.00	н	7.73
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 20.00 = 21.00 = Unpaved =7.39	d	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.05	+	0.00	+	0.00	=	0.05
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc						7.80 min	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

Bypass-Imp

Hydrograph type	 SCS Runoff 2 yrs 1 min 0.020 ac 0.0 % 	Peak discharge	= 0.037 cfs
Storm frequency		Time to peak	= 12.10 hrs
Time interval		Hyd. volume	= 104 cuft
Drainage area		Curve number	= 98
Basin Slope		Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 2.00 min
Total precip.	= 1.75 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-N	IINSbdpe factor	= 484

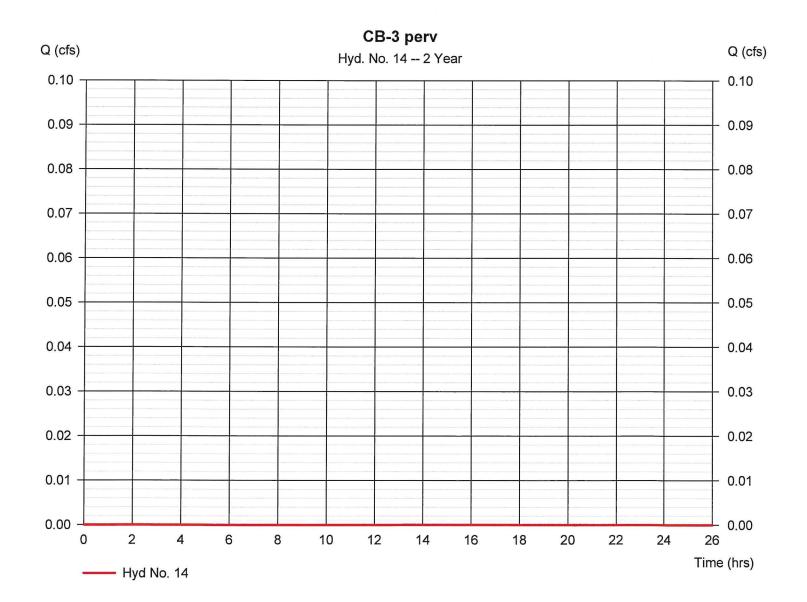


18

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Bypass Total


19

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

CB-3 perv

Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= 14.42 hrs
Time interval	= 1 min	Hyd. volume	= 1 cuft
Drainage area	= 0.010 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 3.80 min
Total precip.	= 1.75 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-M	IINSbdpe factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

CB-3 perv

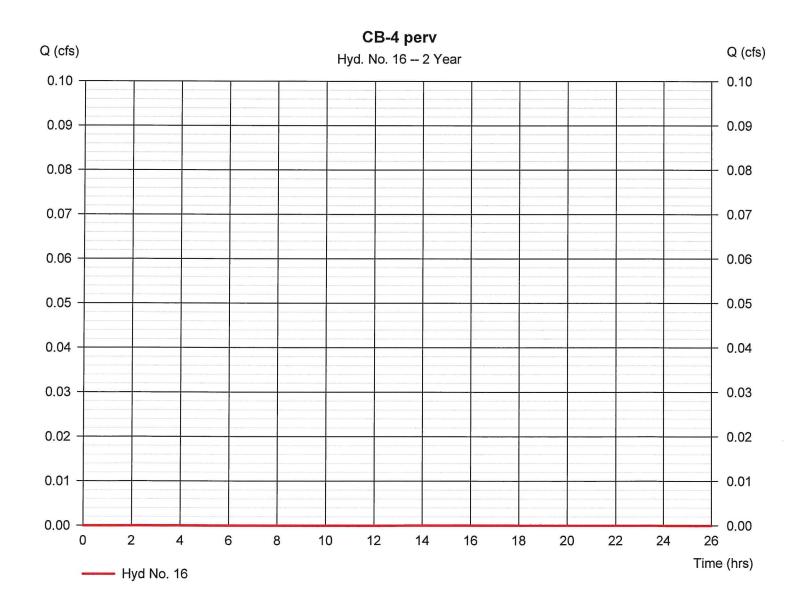
Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 19.0 = 3.34 = 3.00		0.013 20.0 3.34 2.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 3.15	+	0.37	+	0.00	=	3.52
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 38.00 = 1.30 = Paved =2.32		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.27	+	0.00	+	0.00	=	0.27
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc						3.80 min	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 15

cb-4 Imp

Hydrograph type	= SCS Runoff	Peak discharge	= 0.187 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 520 cuft
Drainage area	= 0.100 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 2.00 min
Total precip.	= 1.75 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA C 1-M	IINSbdpe factor	= 484
		•	


22

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 16

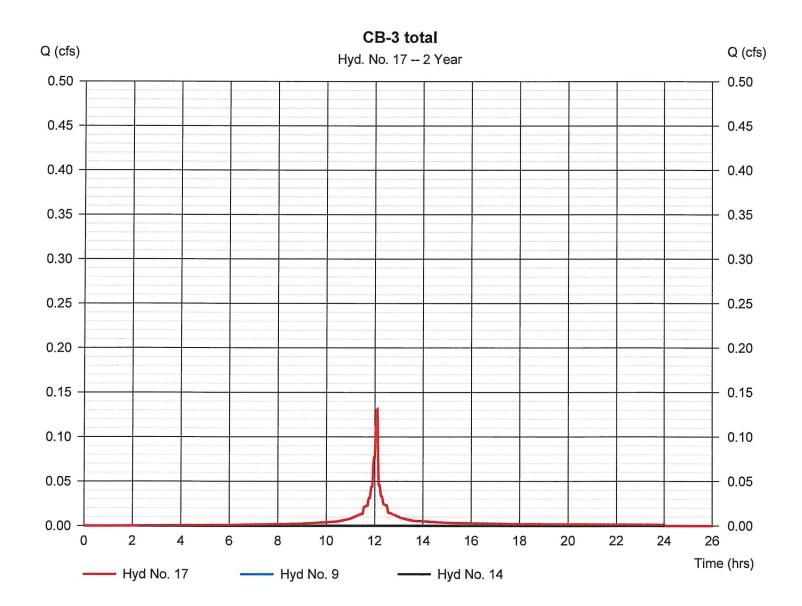
CB-4 perv

Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= 14.52 hrs
Time interval	= 1 min	Hyd. volume	= 1 cuft
Drainage area	= 0.010 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 7.70 min
Total precip.	= 1.75 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA C 1-M	/INSbdpe factor	= 484

23

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

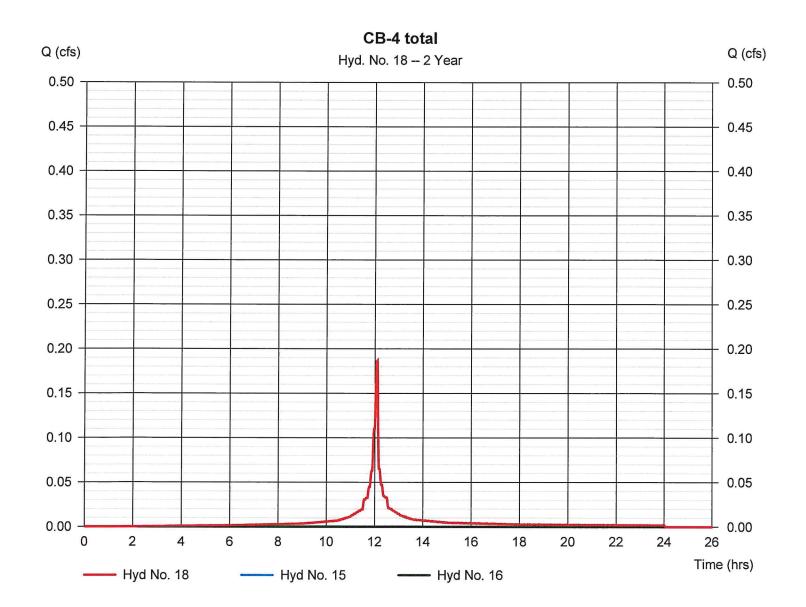
Hyd. No. 16


CB-4 perv

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 62.0 = 3.34 = 3.80		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 7.37	+	0.00	+	0.00	=	7.37
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 57.00 = 2.30 = Paved =3.08		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.31	+	0.00	+	0.00	=	0.31
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc						7.70 min	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

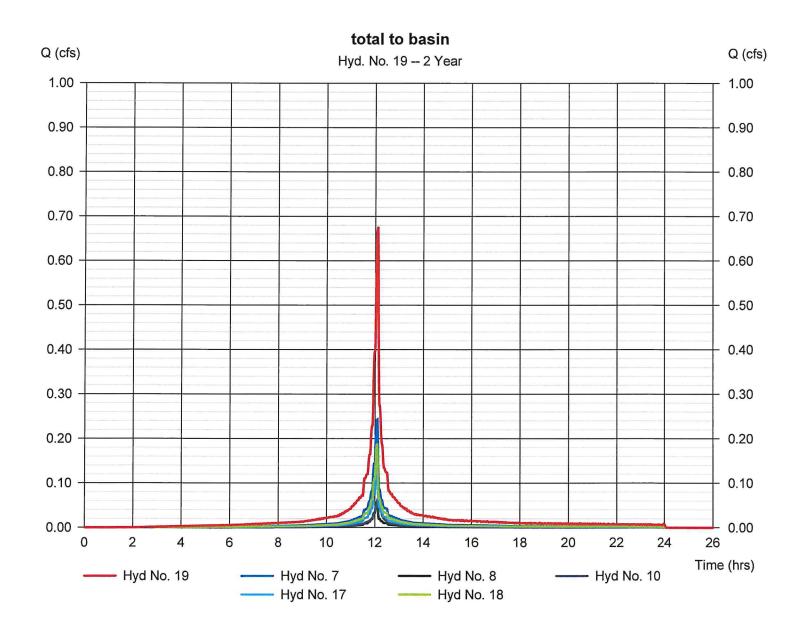
Hyd. No. 17


CB-3 total

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 18

CB-4 total

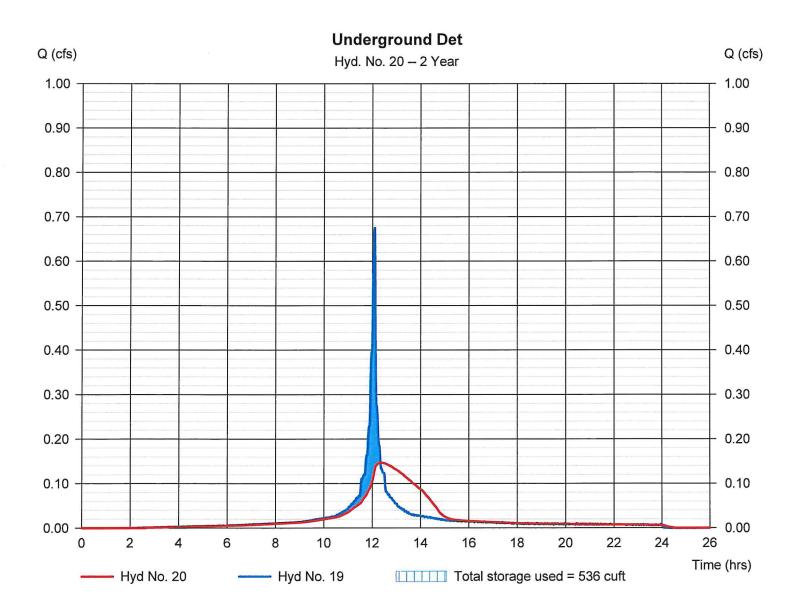

26

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 19

total to basin

Hydrograph type	= Combine	Peak discharge	= 0.676 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 1,940 cuft
Inflow hyds.	= 7, 8, 10, 17, 18	Contrib. drain. area	= 0.070 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 20

Underground Det

Hydrograph type	= Reservoir	Peak discharge	= 0.147 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.35 hrs
Time interval	= 1 min	Hyd. volume	= 1,939 cuft
Inflow hyd. No.	= 19 - total to basin	Max. Elevation	= 123.00 ft
Reservoir name	= Det Basin	Max. Storage	= 536 cuft

Storage Indication method used.

28

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Pond No. 1 - Det Basin

Pond Data

UG Chambers -Invert elev. = 122.20 ft, Rise x Span = 3.00 x 3.00 ft, Barrel Len = 80.00 ft, No. Barrels = 4, Slope = 0.00%, Headers = Yes

Stage / Storage Table

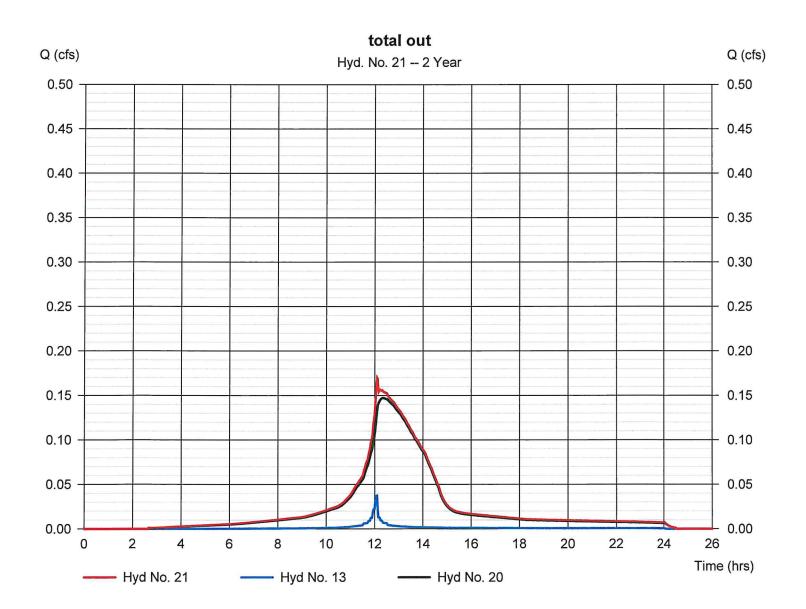
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	122.20	n/a	0	0
0.30	122.50	n/a	130	130
0.60	122.80	n/a	225	356
0.90	123.10	n/a	274	630
1.20	123.40	n/a	302	932
1.50	123.70	n/a	316	1,248
1.80	124.00	n/a	316	1,564
2.10	124.30	n/a	302	1,866
2.40	124.60	n/a	274	2,140
2.70	124.90	n/a	225	2,366
3.00	125.20	n/a	130	2,496

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 15.00	3.00	0.00	0.00	Crest Len (ft)	= 0.25	5.00	Inactive	0.00
Span (in)	= 15.00	3.00	0.00	0.00	Crest El. (ft)	= 123.20	124,80	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3,33	2.60	2.60	3.33
Invert El. (ft)	= 121.90	122.13	0.00	0.00	Weir Type	= Rect	Broad	Broad	
Length (ft)	= 7.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.01	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			
						0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table


Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	122.20	0.00	0.00		_	0.00	0.00					0.000
0.30	130	122.50	0.09 oc	0.09 ic			0.00	0.00					0.085
0.60	356	122.80	0.13 oc	0.12 ic			0.00	0.00				-	0.124
0.90	630	123.10	0.16 oc	0.16 ic			0.00	0.00					0.158
1.20	932	123.40	0.23 oc	0.15 ic			0.07	0.00					0.229
1.50	1,248	123.70	0.47 oc	0.17 ic			0.29	0.00					0.469
1.80	1,564	124.00	0.82 oc	0.22 ic			0.60	0.00			-		0.812
2.10	1,866	124.30	1.21 oc	0.25 ic			0.96	0.00				-	1.211
2.40	2,140	124.60	1.66 oc	0.28 ic			1.38	0.00					1.659
2.70	2,366	124.90	2.56 oc	0.30 ic			1.84 s	0.41				-	2.554
3.00	2,496	125.20	5.80 oc	0.29 ic			2.23 s	3.29					5.803

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

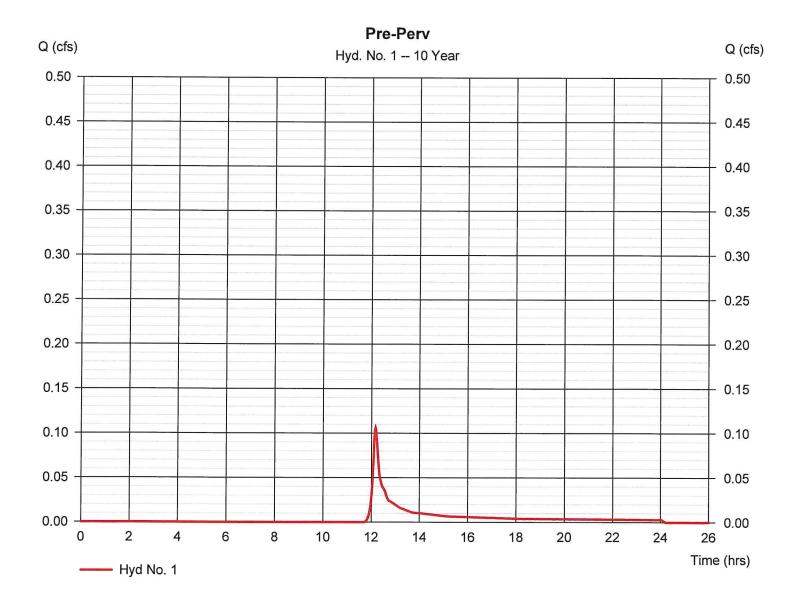
Hyd. No. 21

total out

Hydrograph type Storm frequency	= Combine = 2 yrs	Peak discharge Time to peak	= 0.169 cfs = 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 2,054 cuft
Inflow hyds.	= 13, 20	Contrib. drain. area	= 0.000 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.106	1	730	387			· ·	Pre-Perv
2	SCS Runoff	1.150	1	727	3,892				PreImp
3	SCS Runoff	0.228	1	728	671				Pre-gravel
4	Combine	1.475	1	728	4,950	1, 2, 3			Pre-total
5	SCS Runoff	0.010	1	726	26				CB-2 perv
6	SCS Runoff	0.555	1	726	1,622				CB-2 Imp
7	Combine	0.565	1	726	1,648	5, 6			CB-2 total
8	SCS Runoff	0.128	1	726	374				CB-1 Imp
9	SCS Runoff	0.299	1	726	873				CB-3 Imp
10	SCS Runoff	0.148	1	728	532				Dunkin Bldg
11	SCS Runoff	0.080	1	729	270				Bypass-Perv
12	SCS Runoff	0.085	1	726	249				Bypass-Imp
13	Combine	0.153	1	726	519	11, 12			Bypass Total
14	SCS Runoff	0.010	1	727	28				CB-3 perv
15	SCS Runoff	0.427	1	726	1,247				cb-4 Imp
16	SCS Runoff	0.008	1	729	27				CB-4 perv
17	Combine	0.308	1	726	901	9, 14,			CB-3 total
18	Combine	0.434	1	726	1,274	15, 16,			CB-4 total
19	Combine	1.573	1	726	4,729	7, 8, 10,			total to basin
20	Reservoir	0.540	1	734	4,728	17, 18 19	123.77	1,318	Underground Det
21	Combine	0.629	1	732	5,248	13, 20			total out
SCS Dunkin 9-1-2021.gpw			Return P	eriod: 10 Y	/ ear	Thursday, (09 / 16 / 2021		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

Pre-Perv

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip.	 SCS Runoff 10 yrs 1 min 0.140 ac 0.1 % KIRPICH 3.90 in 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution	 0.106 cfs 12.17 hrs 387 cuft 61 198 ft 8.54 min Custom
Total precip. Storm duration		Distribution	= 8.54 min = Custom = 484

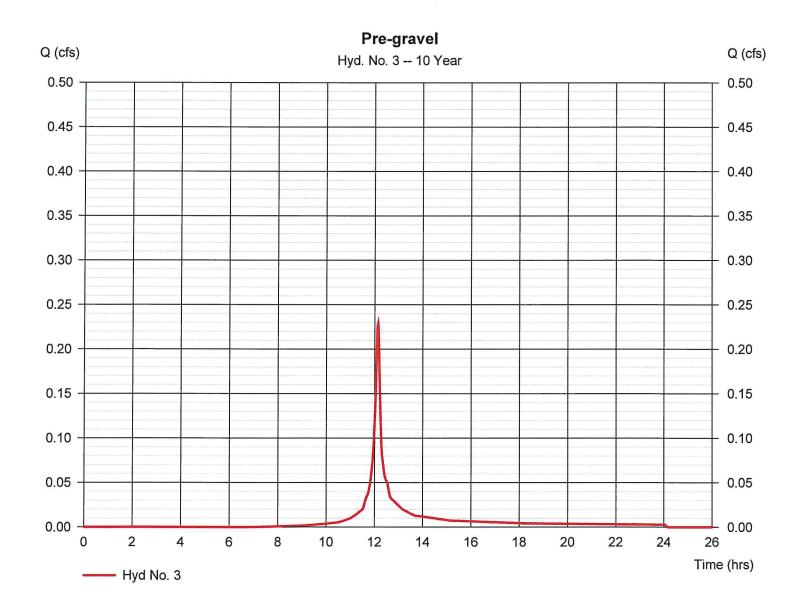

32

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 2

Pre--Imp

Hydrograph type	= SCS Runoff	Peak discharge	= 1.150 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.12 hrs
Time interval	= 1 min	Hyd. volume	= 3,892 cuft
Drainage area	= 0.300 ac	Curve number	= 98
Basin Slope	= 0.1 %	Hydraulic length	= 178 ft
Tc method	= KIRPICH	Time of conc. (Tc)	= 7.87 min
Total precip.	= 3.90 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA C 1-M	11NSbdpe factor	= 484

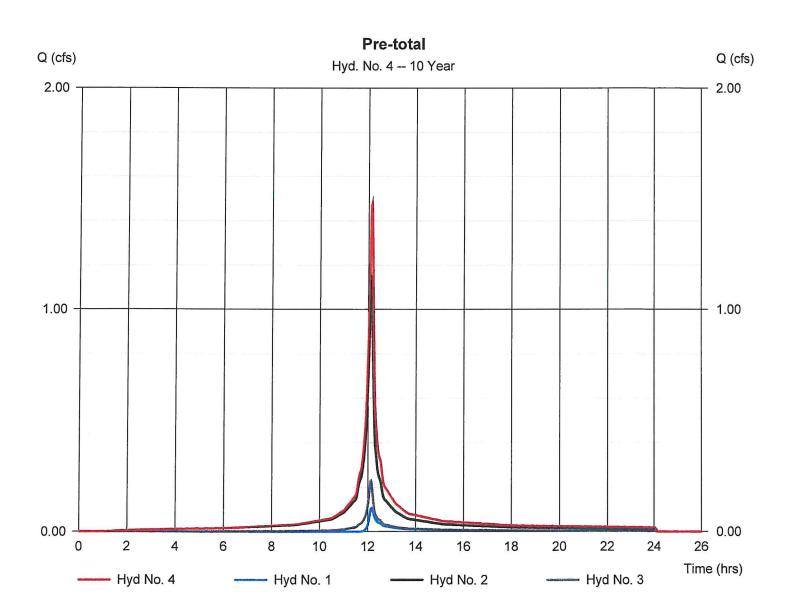


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

Pre-gravel

Hydrograph type	= SCS Runoff	Peak discharge	= 0.228 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 671 cuft
Drainage area	= 0.080 ac	Curve number	= 85
Basin Slope	= 0.1 %	Hydraulic length	= 178 ft
Tc method	= KIRPICH	Time of conc. (Tc)	= 7.87 min
Total precip.	= 3.90 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA C 1-M	11NSbdpe factor	= 484

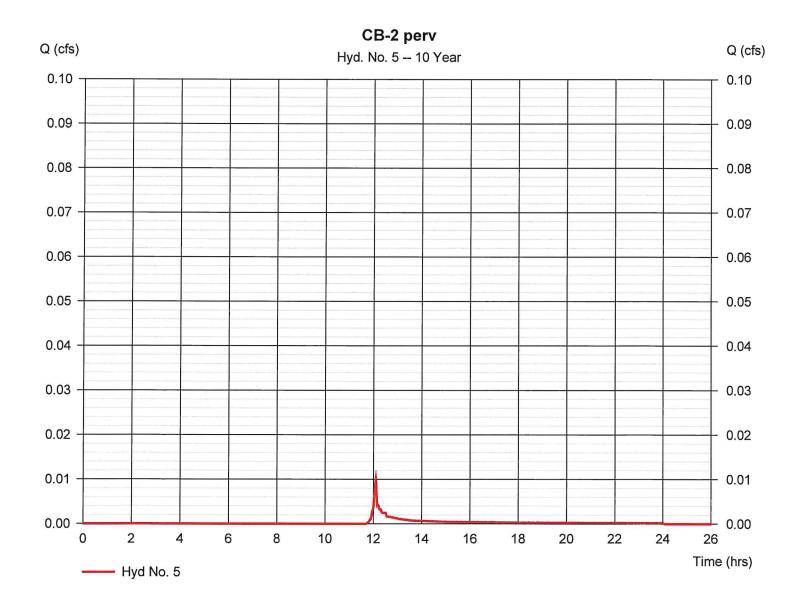


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

Pre-total

Hydrograph type	= Combine	Peak discharge	= 1.475 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 4,950 cuft
Inflow hyds.	= 1, 2, 3	Contrib. drain. area	= 0.520 ac

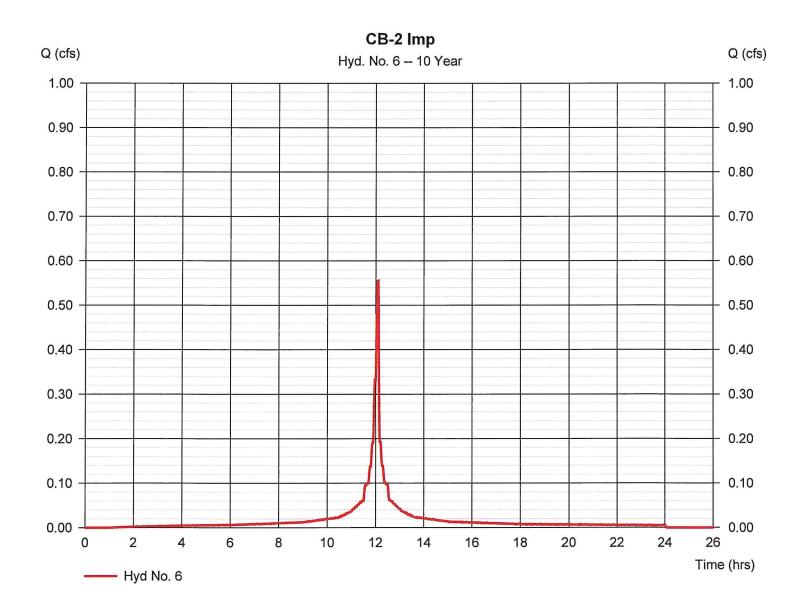

35

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

CB-2 perv

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip.	 SCS Runoff 10 yrs 1 min 0.010 ac 0.0 % TR55 3.90 in 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution	 = 0.010 cfs = 12.10 hrs = 26 cuft = 61 = 0 ft = 2.83 min = Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-N		= 484

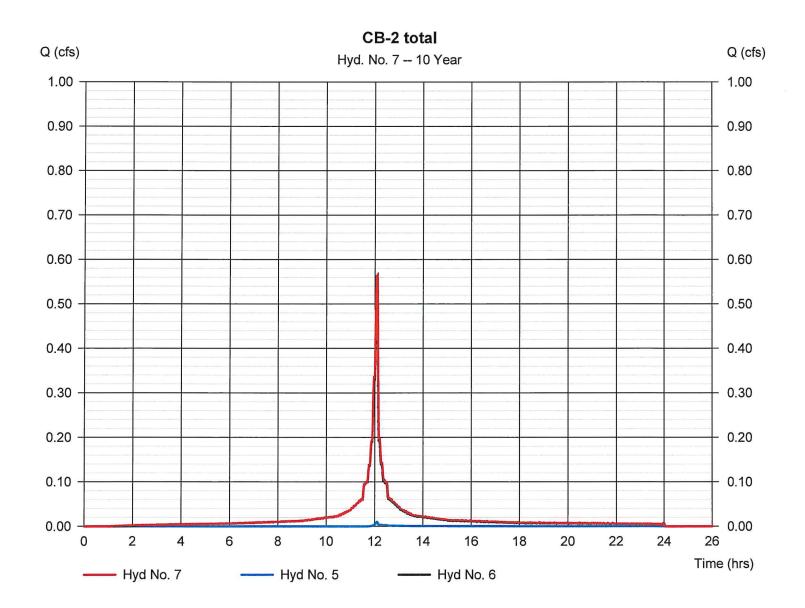


36

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 6

CB-2 Imp

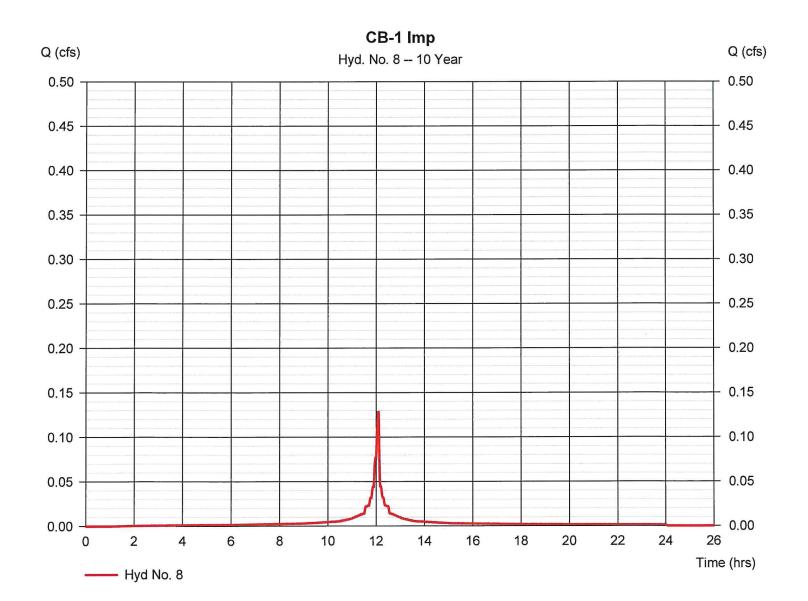


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 7

CB-2 total

Hydrograph type	= Combine	Peak discharge	= 0.565 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 1,648 cuft
Inflow hyds.	= 5, 6	Contrib. drain. area	= 0.140 ac

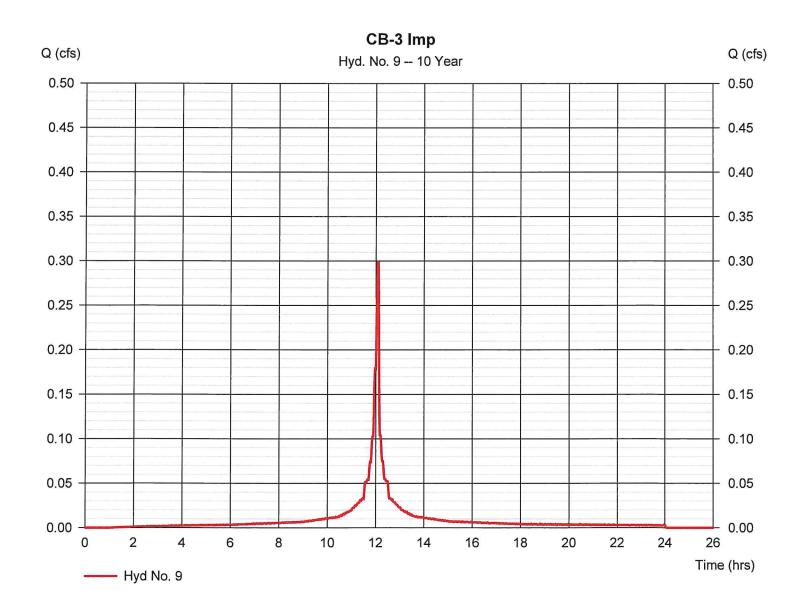


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

CB-1 Imp

Hydrograph type Storm frequency Time interval Drainage area Basin Slope	 SCS Runoff 10 yrs 1 min 0.030 ac 0.0 % 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length	= 0.128 cfs = 12.10 hrs = 374 cuft = 98 = 0 ft = 2.00 min
		the set of the set	
Drainage area	= 0.030 ac	Curve number	
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 2.00 min
Total precip.	= 3.90 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-N	IINSbdpe factor	= 484

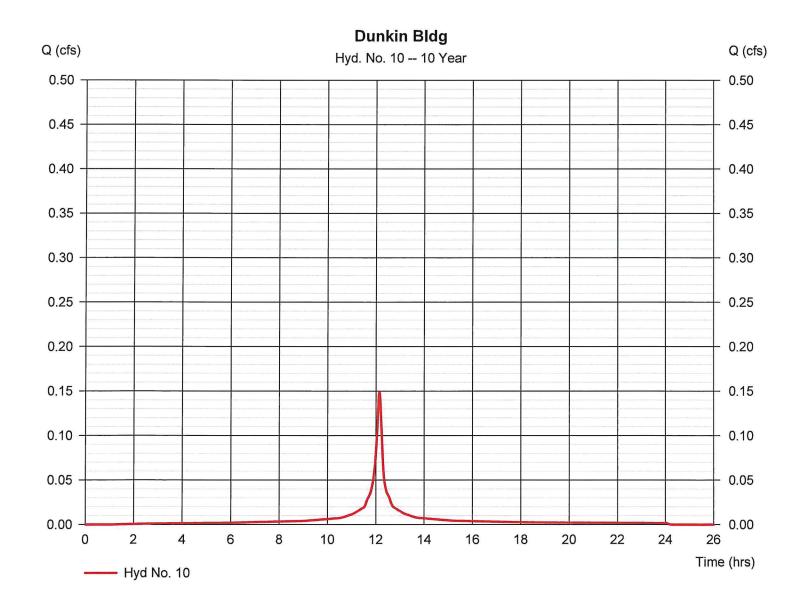


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 9

CB-3 Imp

Hydrograph type	= SCS Runoff	Peak discharge	= 0.299 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 873 cuft
Drainage area	= 0.070 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 2.00 min
Total precip.	= 3.90 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-M	IINSbdpe factor	= 484

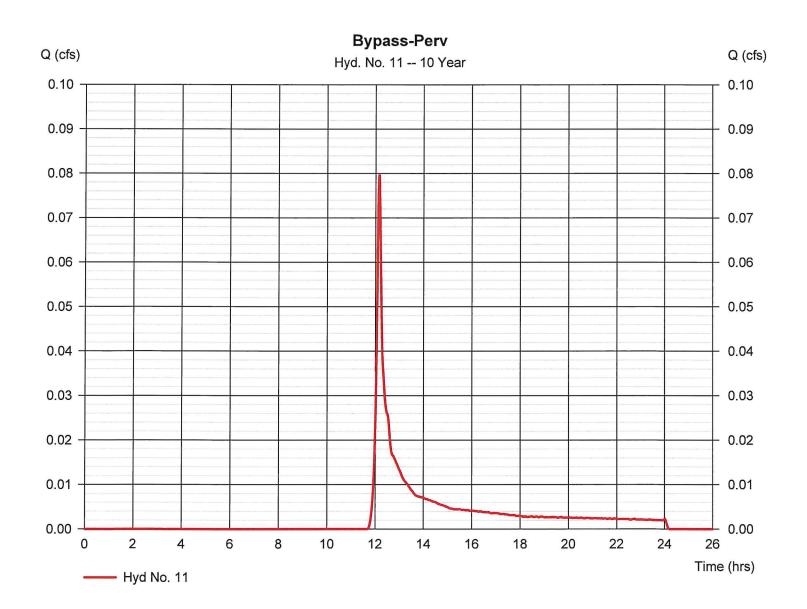


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

Dunkin Bldg

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip. Storm duration	 SCS Runoff 10 yrs 1 min 0.040 ac 0.0 % User 3.90 in Z:\Stormwater\NOAA_C_1-M 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution	 = 0.148 cfs = 12.13 hrs = 532 cuft = 98 = 0 ft = 10.00 min = Custom = 484
Storm duration	= Z:\Stormwater\NOAA_C_1-M	inabape factor	= 484

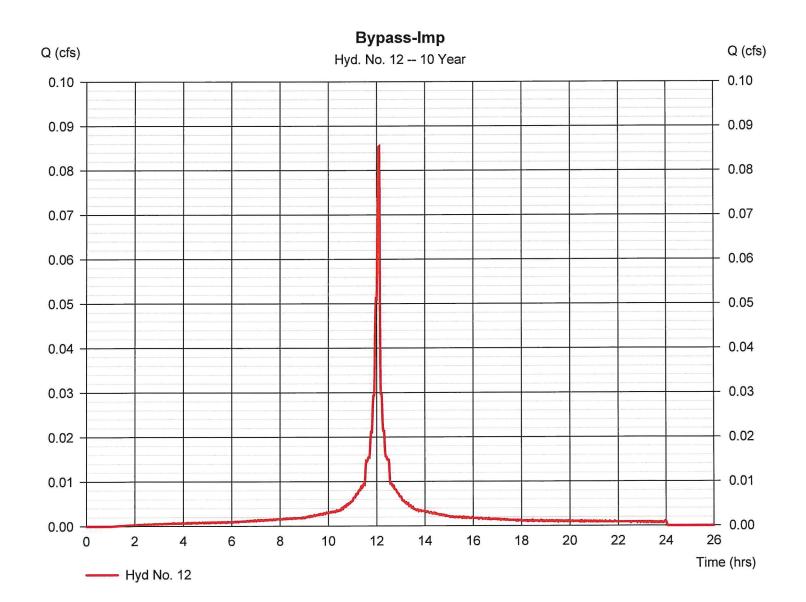

41

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

Bypass-Perv

Hydrograph type	= SCS Runoff	Peak discharge	= 0.080 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.15 hrs
Time interval	= 1 min	Hyd. volume	= 270 cuft
Drainage area	= 0.100 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 7.80 min
Total precip.	= 3.90 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA C 1-M	11NSbdpe factor	= 484
		-	

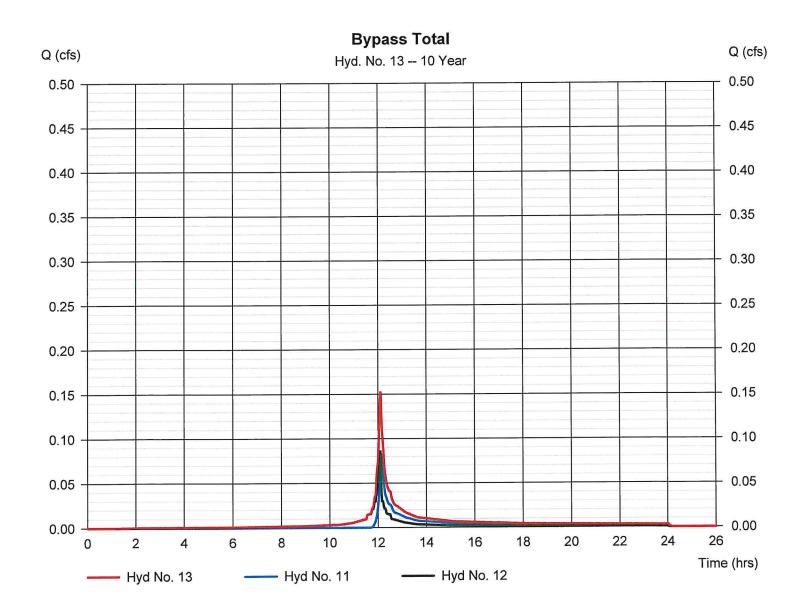


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

Bypass-Imp

Hydrograph type Storm frequency	= SCS Runoff = 10 yrs	Peak discharge Time to peak	= 0.085 cfs = 12.10 hrs
Time interval	$= 1 \min$	Hyd. volume	= 249 cuft
Drainage area	= 0.020 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 2.00 min
Total precip.	= 3.90 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOA	A_C_1-MINSbdpe factor	= 484

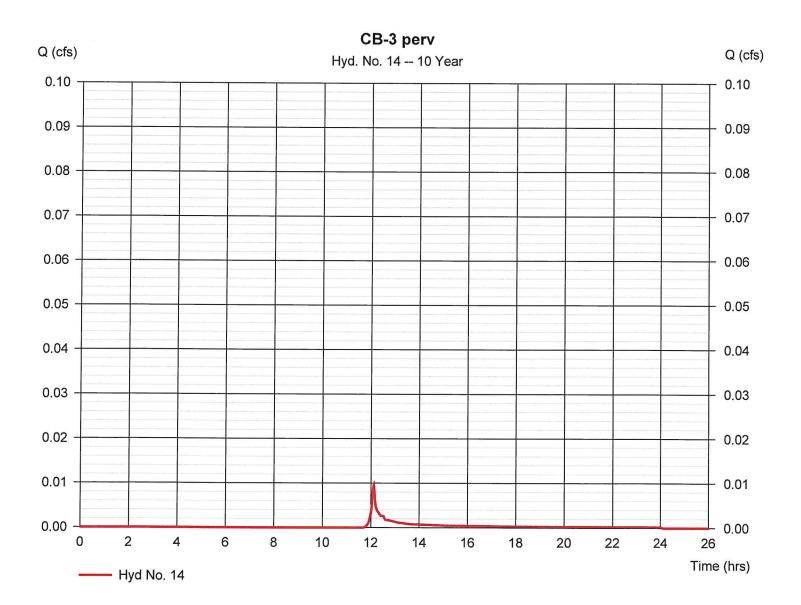


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Bypass Total

Inflow hyds. = 11, 12 Contrib. drain. area = 0.120 ac	Inflow hyds. = 11, 12 Contrib. drain. area = 0.120 ac	Hydrograph type Storm frequency Time interval Inflow hyds.	= Combine = 10 yrs = 1 min = 11, 12	Peak discharge Time to peak Hyd. volume Contrib. drain. area	= 0.153 cfs = 12.10 hrs = 519 cuft = 0.120 ac
---	---	---	--	---	--

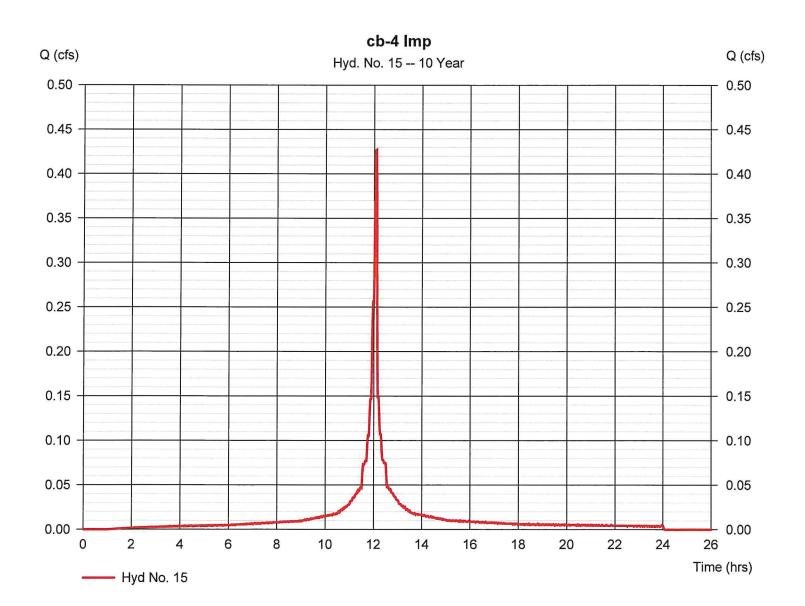

44

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

CB-3 perv

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip.	 SCS Runoff 10 yrs 1 min 0.010 ac 0.0 % TR55 3.90 in 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution	 = 0.010 cfs = 12.12 hrs = 28 cuft = 61 = 0 ft = 3.80 min = Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-N	IIN&bdpe factor	= 484

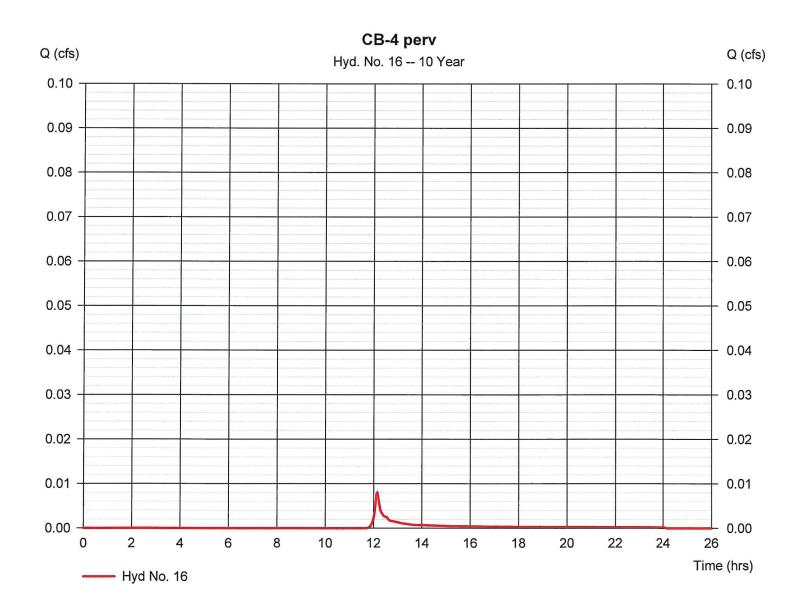


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 15

cb-4 Imp

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip. Storm duration	 SCS Runoff 10 yrs 1 min 0.100 ac 0.0 % User 3.90 in Z:\Stormwater\NOAA C 1-M 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution	 = 0.427 cfs = 12.10 hrs = 1,247 cuft = 98 = 0 ft = 2.00 min = Custom = 484
Storm duration	= Z:\Stormwater\NOAA_C_1-N	IINSbdpe factor	= 484

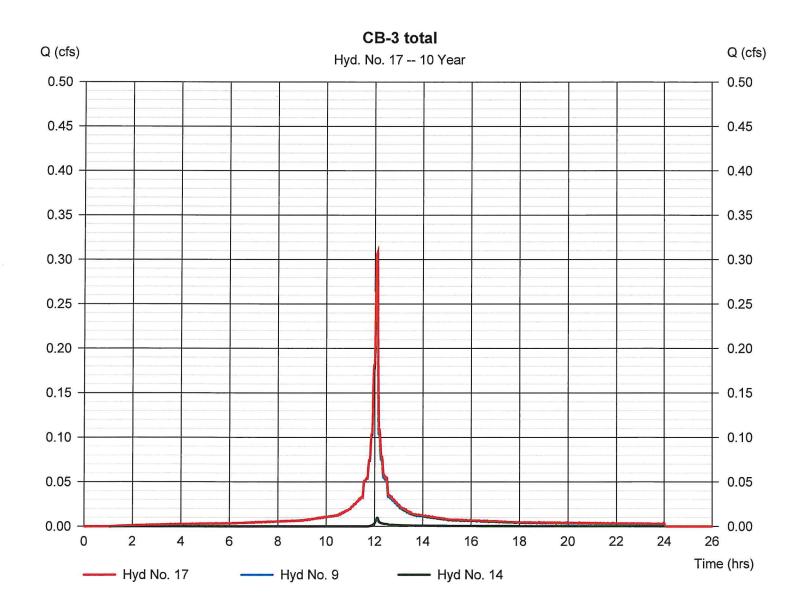

46

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 16

CB-4 perv

Hydrograph type	= SCS Runoff	Peak discharge	= 0.008 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.15 hrs
Time interval	= 1 min	Hyd. volume	= 27 cuft
Drainage area	= 0.010 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 7.70 min
Total precip.	= 3.90 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA C 1-N	/INSbdpe factor	= 484
		•	

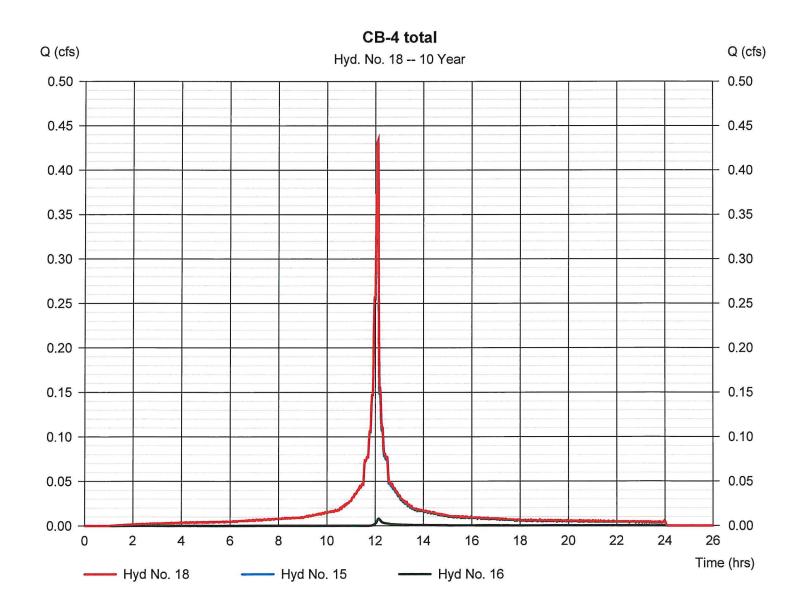


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 17

CB-3 total

Hydrograph type	= Combine	Peak discharge	= 0.308 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 901 cuft
Inflow hyds.	= 9, 14	Contrib. drain. area	= 0.080 ac

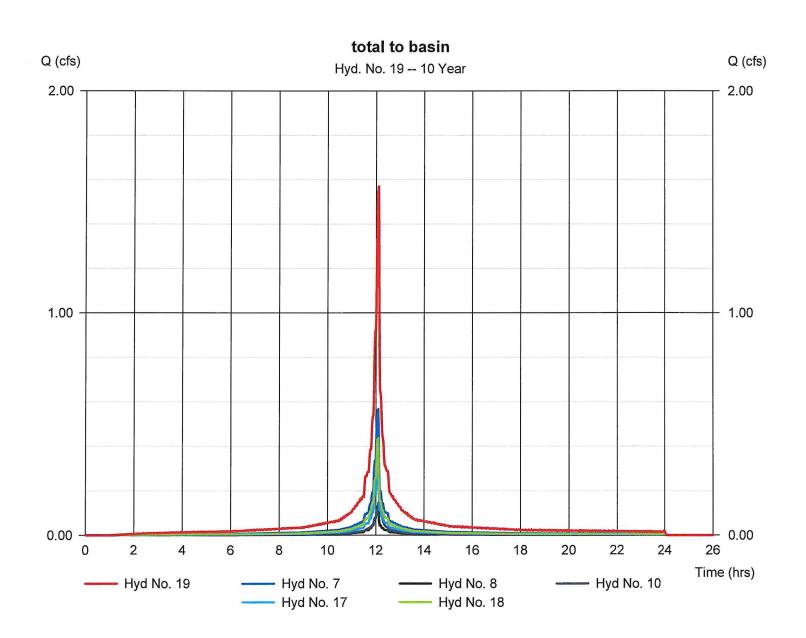


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 18

CB-4 total

Hydrograph type	= Combine	Peak discharge	= 0.434 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 1,274 cuft
Inflow hyds.	= 15, 16	Contrib. drain. area	= 0.110 ac

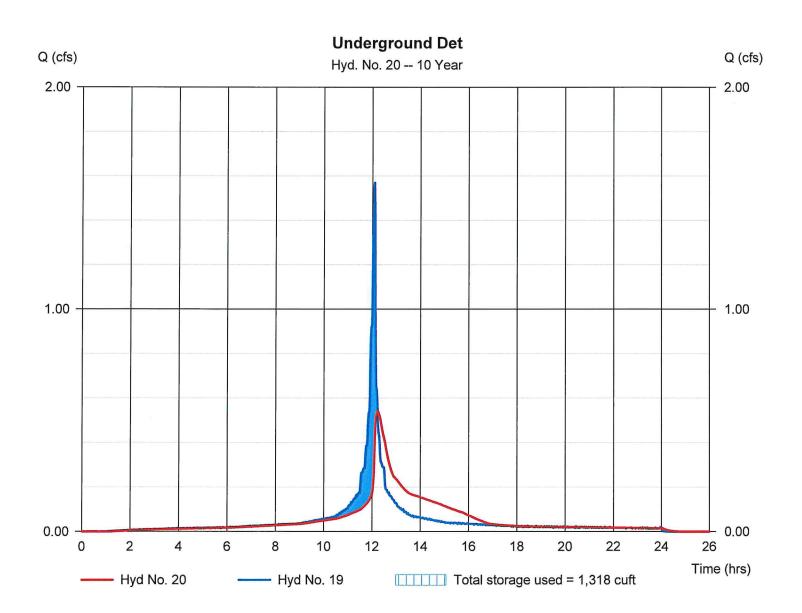


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 19

total to basin

Hydrograph type	= Combine	Peak discharge	= 1.573 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 4,729 cuft
Inflow hyds.	= 7, 8, 10, 17, 18	Contrib. drain. area	= 0.070 ac

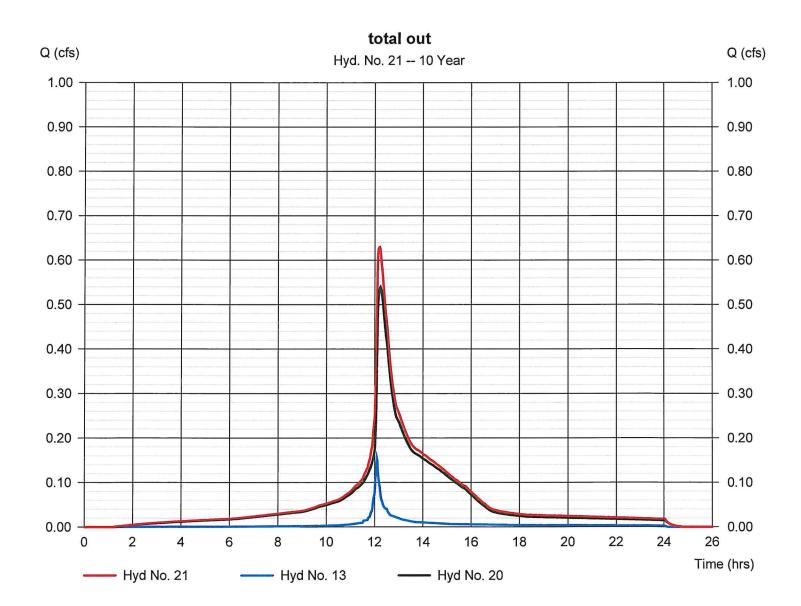

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 20

Underground Det

Hydrograph type	= Reservoir	Peak discharge	= 0.540 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.23 hrs
Time interval	= 1 min	Hyd. volume	= 4,728 cuft
Inflow hyd. No.	= 19 - total to basin	Max. Elevation	= 123.77 ft
Reservoir name	= Det Basin	Max. Storage	= 1,318 cuft

Storage Indication method used.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

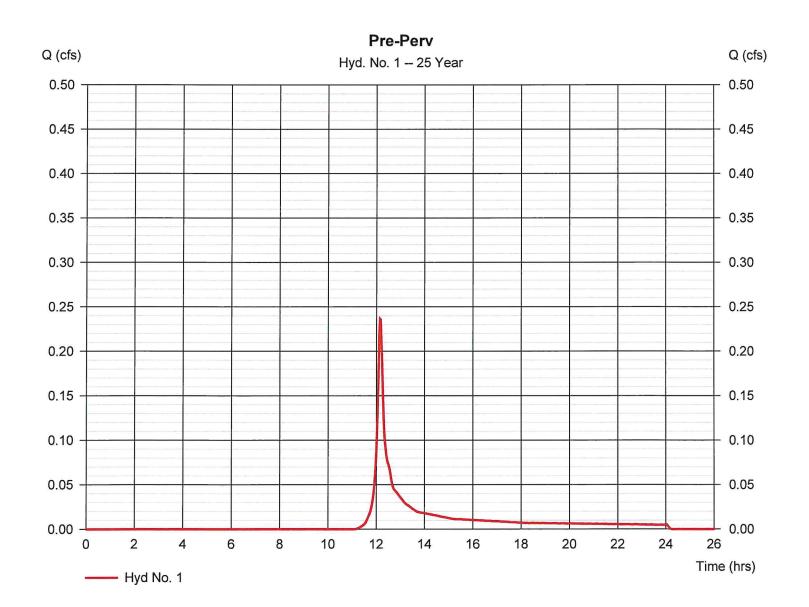
Hyd. No. 21

total out

Inflow hyds. = 13, 20 Contrib. drain. area = 0.000 ac	Hydrograph type	= Combine	Peak discharge	= 0.629 cfs
	Storm frequency	= 10 yrs	Time to peak	= 12.20 hrs
	Time interval	= 1 min	Hyd. volume	= 5,248 cuft
	Inflow hyds.	= 13, 20	Contrib. drain. area	= 0.000 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.236	1	729	773				Pre-Perv
2	SCS Runoff	1.554	1	727	5,322				PreImp
3	SCS Runoff	0.341	1	728	1,019				Pre-gravel
4	Combine	2.122	1	728	7,115	1, 2, 3			Pre-total
5	SCS Runoff	0.021	1	726	52				CB-2 perv
6	SCS Runoff	0.750	1	726	2,218				CB-2 Imp
7	Combine	0.771	1	726	2,269	5, 6			CB-2 total
8	SCS Runoff	0.173	1	726	512				CB-1 Imp
9	SCS Runoff	0.404	1	726	1,194				CB-3 Imp
10	SCS Runoff	0.201	1	728	728				Dunkin Bldg
11	SCS Runoff	0.177	1	728	539				Bypass-Perv
12	SCS Runoff	0.115	1	726	341				Bypass-Imp
13	Combine	0.275	1	726	880	11, 12			Bypass Total
14	SCS Runoff	0.021	1	726	55				CB-3 perv
15	SCS Runoff	0.577	1	726	1,706				cb-4 Imp
16	SCS Runoff	0.018	1	728	54				CB-4 perv
17	Combine	0.425	1	726	1,249	9, 14,			CB-3 total
18	Combine	0.593	1	726	1,760	15, 16,			CB-4 total
19	Combine	2.147	1	726	6,518	7, 8, 10,			total to basin
20	Reservoir	0.984	1	729	6,517	17, 18 19	124.13	1,699	Underground Det
21	Combine	1.210	1	728	7,397	13, 20			total out
SCS	S Dunkin 9-1-	2021.gpv	/		Return F	Period: 25 Y	/ ear	Thursday, (09 / 16 / 2021

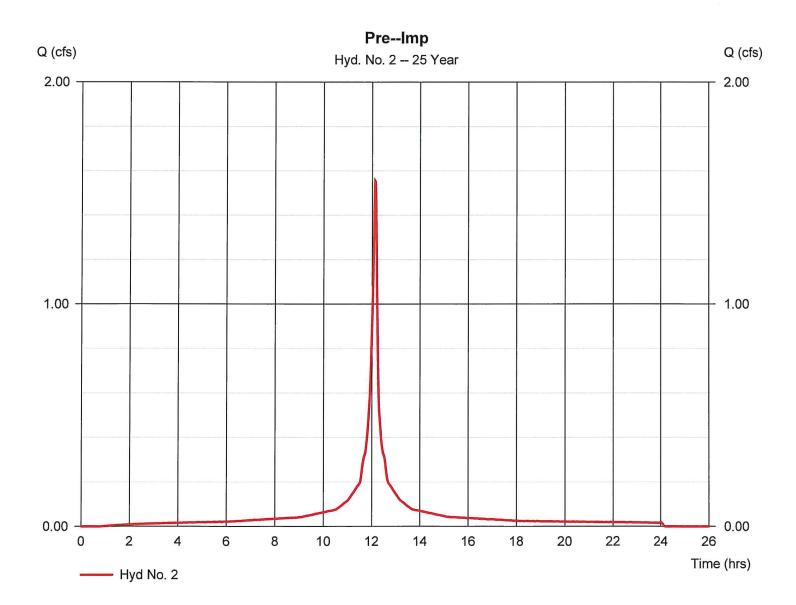
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

Pre-Perv

Hydrograph type	= SCS Runoff	Peak discharge	= 0.236 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.15 hrs
Time interval	= 1 min	Hyd. volume	= 773 cuft
Drainage area	= 0.140 ac	Curve number	= 61
Basin Slope	= 0.1 %	Hydraulic length	= 198 ft
Tc method	= KIRPICH	Time of conc. (Tc)	= 8.54 min
Total precip.	= 5.25 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA C 1-M	INSbdpe factor	= 484
		-	

54

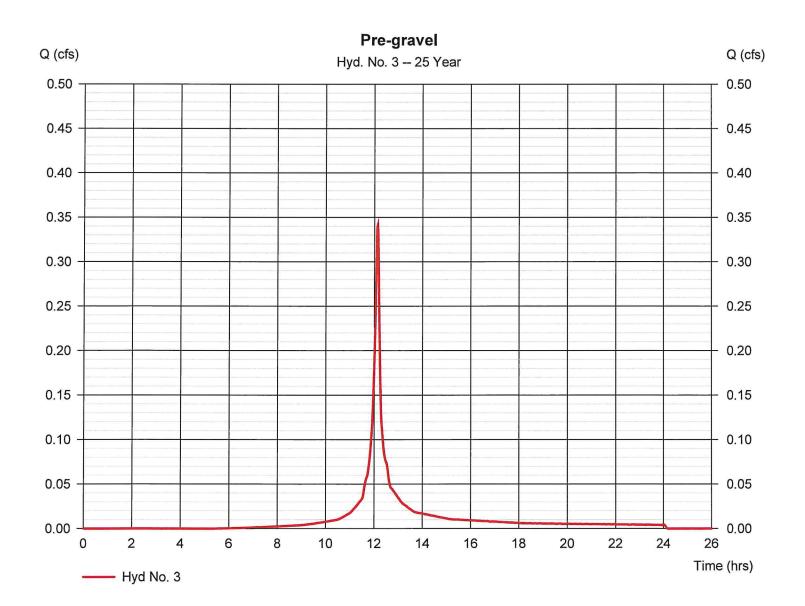

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Thursday, 09 / 16 / 2021

Hyd. No. 2

Pre--Imp

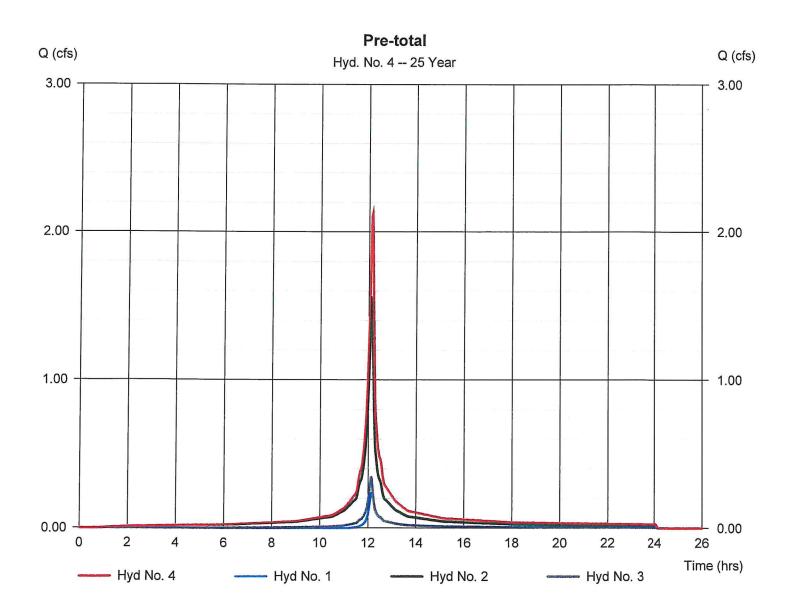
Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip.	 SCS Runoff 25 yrs 1 min 0.300 ac 0.1 % KIRPICH 5.25 in 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution	 = 1.554 cfs = 12.12 hrs = 5,322 cuft = 98 = 178 ft = 7.87 min = Custom
Storm duration	= 5.25 in = Z:\Stormwater\NOAA_C_1-N		= Custom = 484


55

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

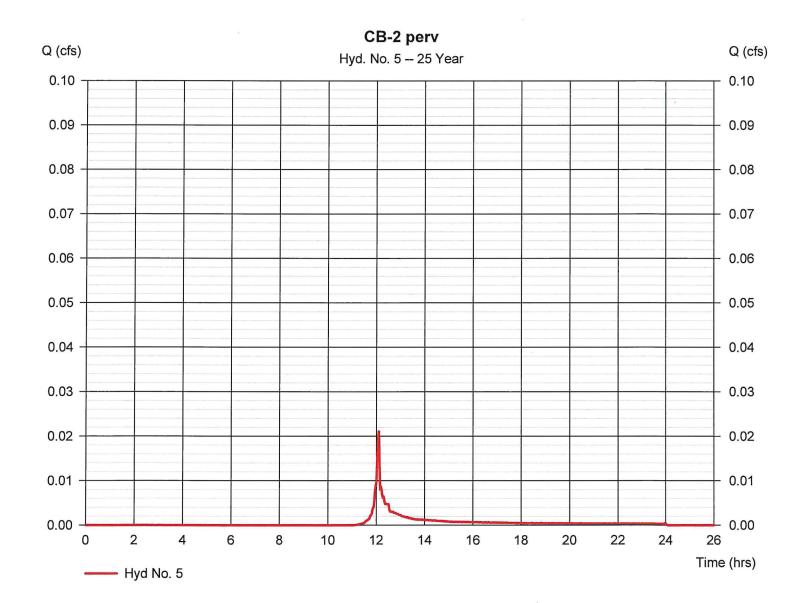
Pre-gravel


Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip.	 SCS Runoff 25 yrs 1 min 0.080 ac 0.1 % KIRPICH 5.25 in 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution	 = 0.341 cfs = 12.13 hrs = 1,019 cuft = 85 = 178 ft = 7.87 min = Custom
Total precip. Storm duration	= 5.25 in = Z:\Stormwater\NOAA_C_1-M		= Custom = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

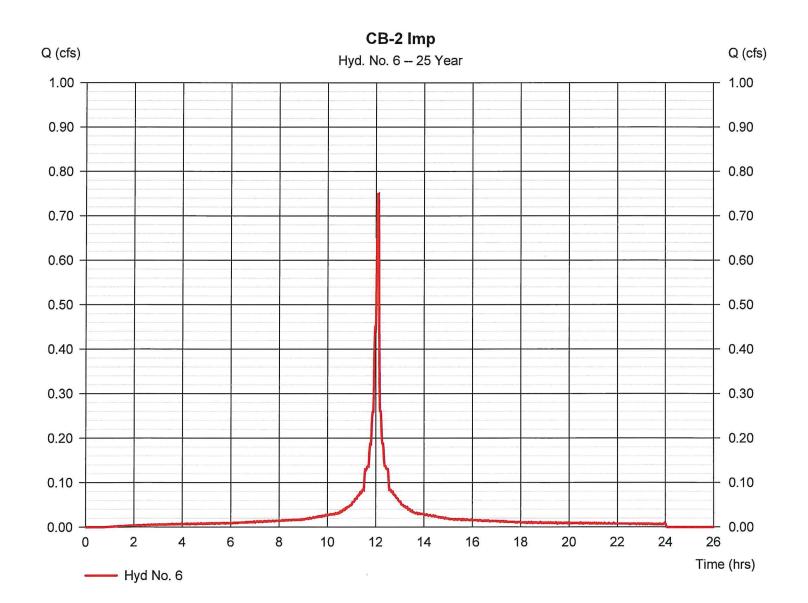
Pre-total


57

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

CB-2 perv


Hydrograph type	= SCS Runoff	Peak discharge	= 0.021 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 52 cuft
Drainage area Basin Slope Tc method Total precip. Storm duration	= 0.010 ac = 0.0 % = TR55 = 5.25 in = Z:\Stormwater\NOAA_C_1-M	Curve number Hydraulic length Time of conc. (Tc) Distribution	= 61 = 0 ft = 2.83 min = Custom = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 6

CB-2 Imp

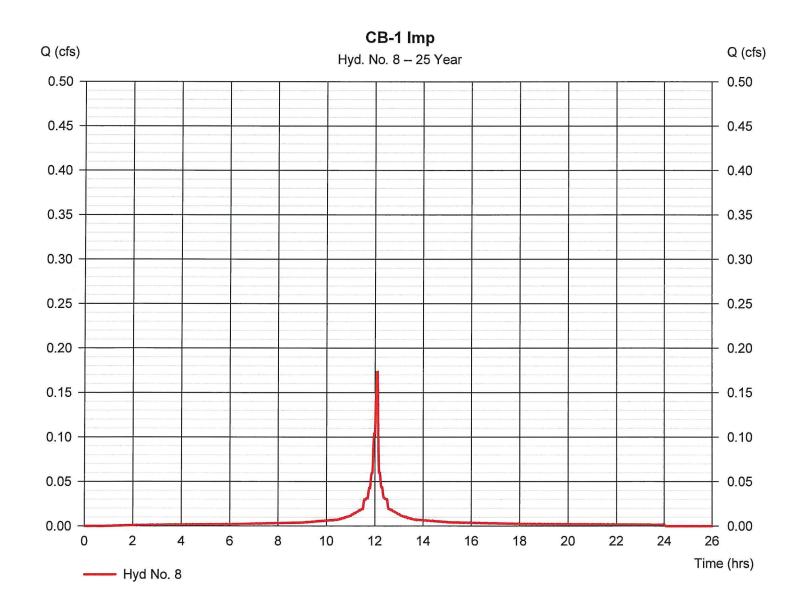


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 7

CB-2 total

Hydrograph type	= Combine	Peak discharge	= 0.771 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 2,269 cuft
Inflow hyds.	= 5,6	Contrib. drain. area	= 0.140 ac

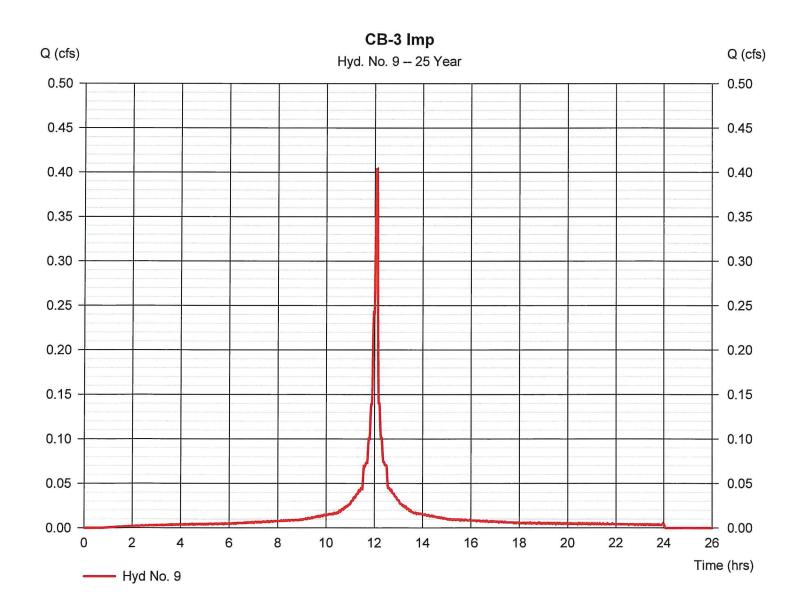


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

CB-1 Imp

Hydrograph type	= SCS Runoff	Peak discharge	= 0.173 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 512 cuft
Drainage area	= 0.030 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 2.00 min
Total precip.	= 5.25 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA C 1-M	11NSbdpe factor	= 484
		-	

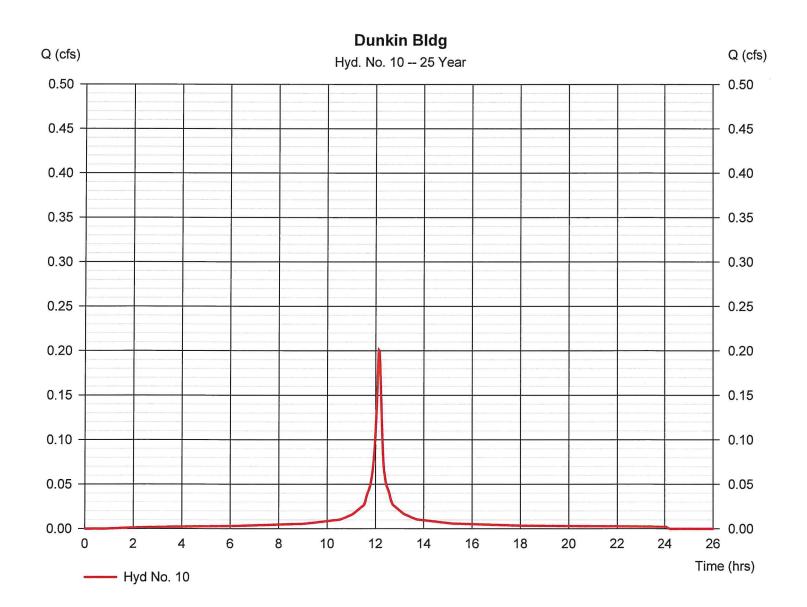

61

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 9

CB-3 Imp

Hydrograph type	= SCS Runoff	Peak discharge	= 0.404 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 1,194 cuft
Drainage area	= 0.070 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 2.00 min
Total precip.	= 5.25 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-N	11NSbdpe factor	= 484

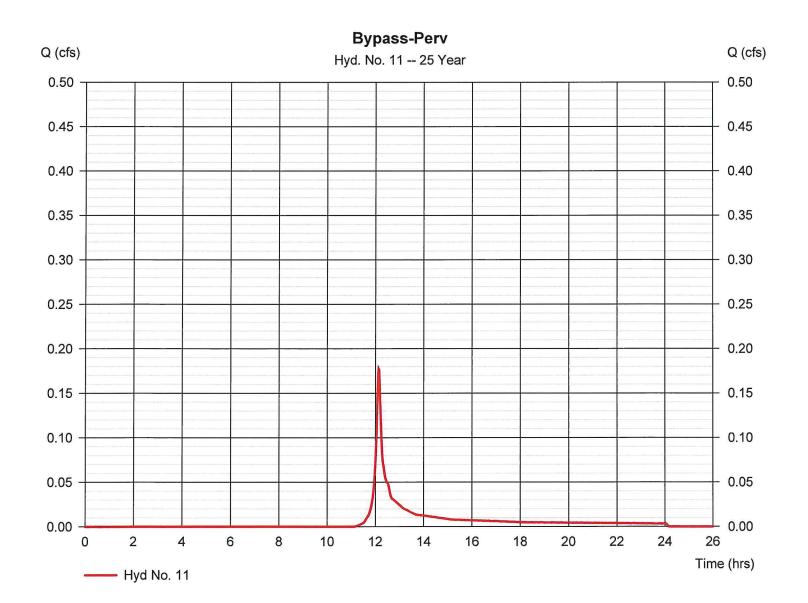


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

Dunkin Bldg

Hydrograph type	= SCS Runoff	Peak discharge	= 0.201 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 728 cuft
Drainage area	= 0.040 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.25 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA C 1-N	/IINSbdpe factor	= 484
		•	

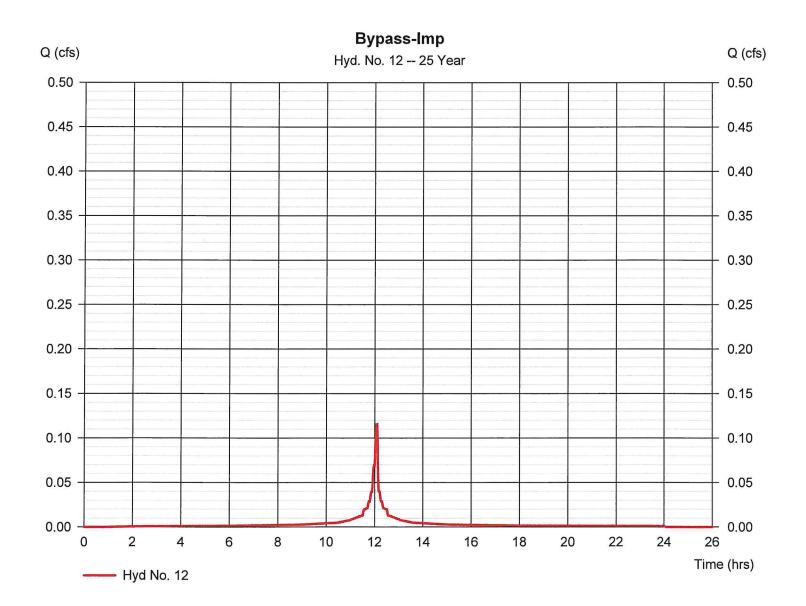


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

Bypass-Perv

Hydrograph type	= SCS Runoff	Peak discharge	= 0.177 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 539 cuft
Drainage area	= 0.100 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 7.80 min
Total precip.	= 5.25 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-M	11NSbdpe factor	= 484

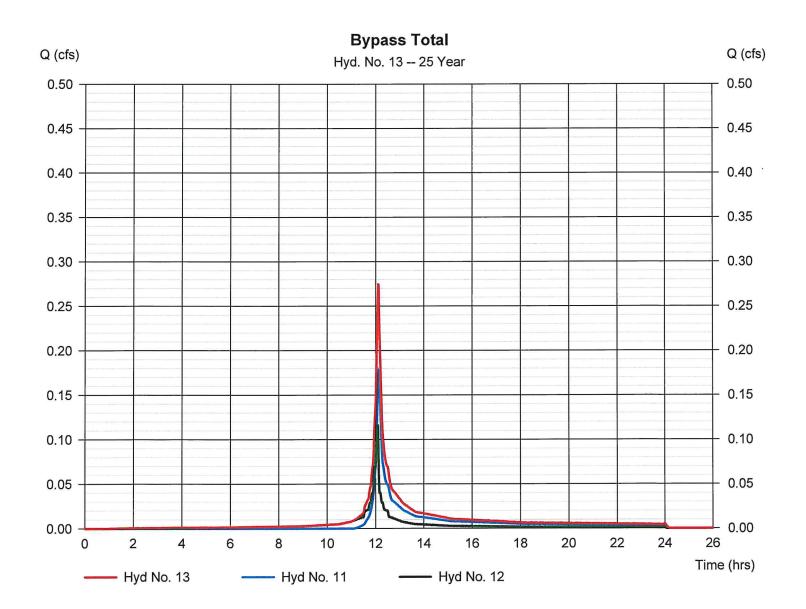


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

Bypass-Imp

Hydrograph type	= SCS Runoff	Peak discharge	= 0.115 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 341 cuft
Drainage area	= 0.020 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 2.00 min
Total precip.	= 5.25 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-M	INSbdpe factor	= 484

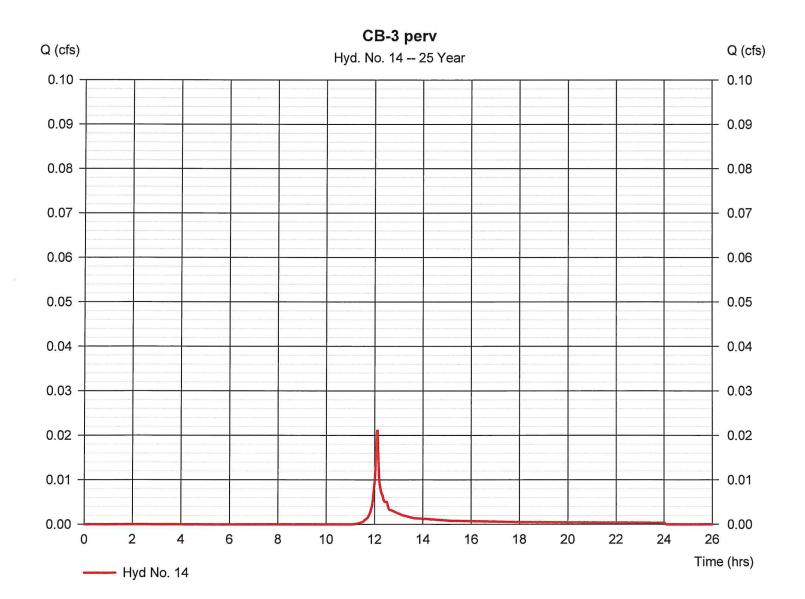


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Bypass Total

Hydrograph type	= Combine	Peak discharge	= 0.275 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 880 cuft
Inflow hyds.	= 11, 12	Contrib. drain. area	= 0.120 ac

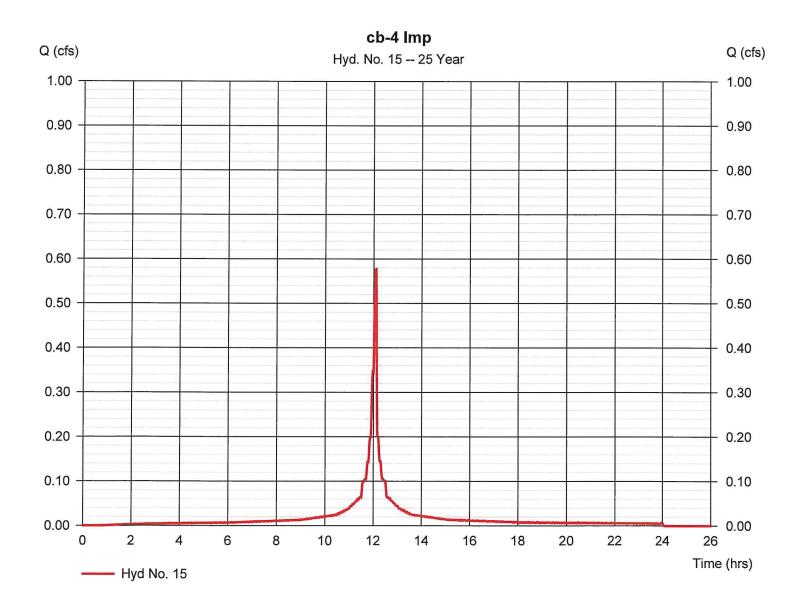


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

CB-3 perv

Hydrograph type	= SCS Runoff	Peak discharge	= 0.021 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 55 cuft
Drainage area	= 0.010 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 3.80 min
Total precip.	= 5.25 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-N	IINSbdpe factor	= 484

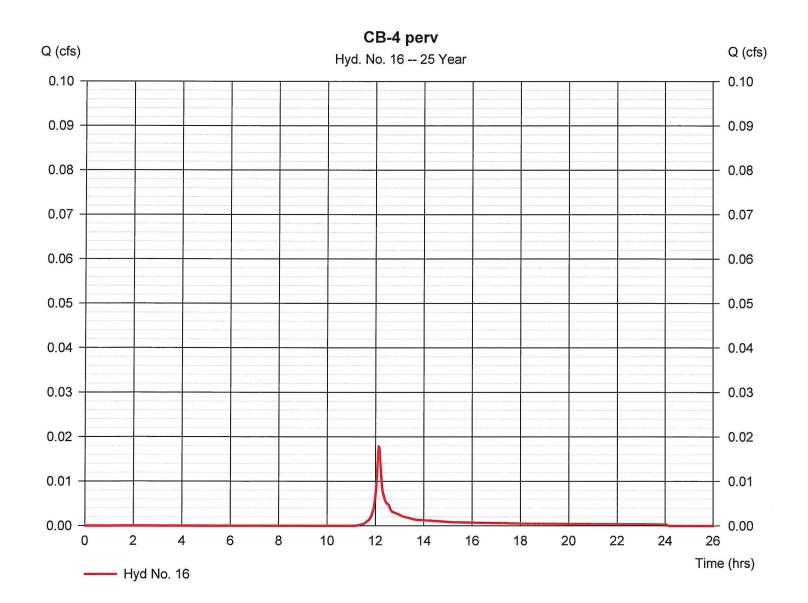

67

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 15

cb-4 Imp

Hydrograph type	= SCS Runoff	Peak discharge	= 0.577 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 1,706 cuft
Drainage area	= 0.100 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 2.00 min
Total precip.	= 5.25 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-M	IINSbdpe factor	= 484

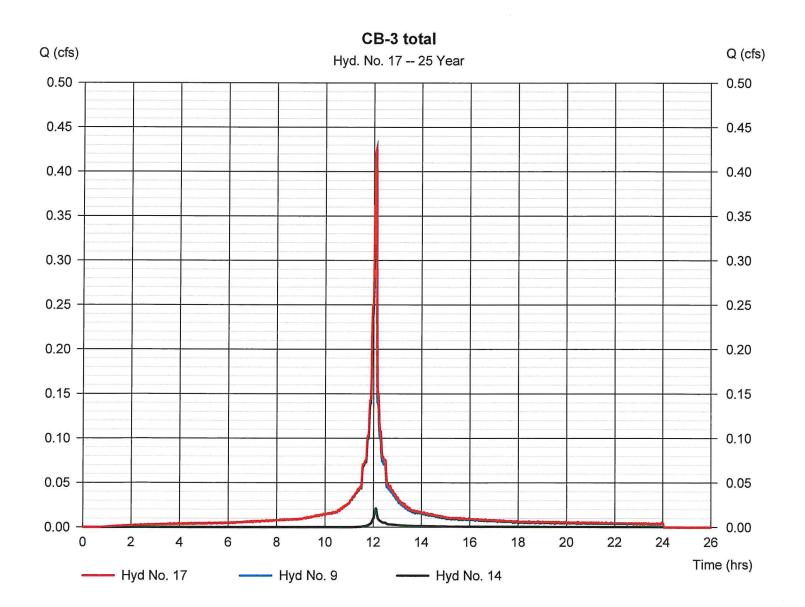


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 16

CB-4 perv

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip.	 SCS Runoff 25 yrs 1 min 0.010 ac 0.0 % TR55 5.25 in 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution	 = 0.018 cfs = 12.13 hrs = 54 cuft = 61 = 0 ft = 7.70 min = Custom
Total precip. Storm duration	= 5.25 in = Z:\Stormwater\NOAA_C_1-N		= Custom = 484

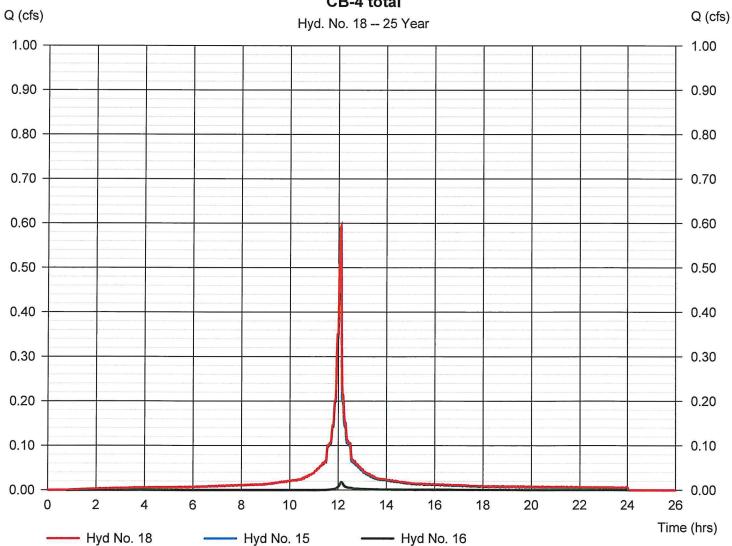


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

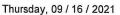
Hyd. No. 17

CB-3 total

Hydrograph type	= Combine	Peak discharge	= 0.425 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 1,249 cuft
Inflow hyds.	= 9, 14	Contrib. drain. area	= 0.080 ac


70

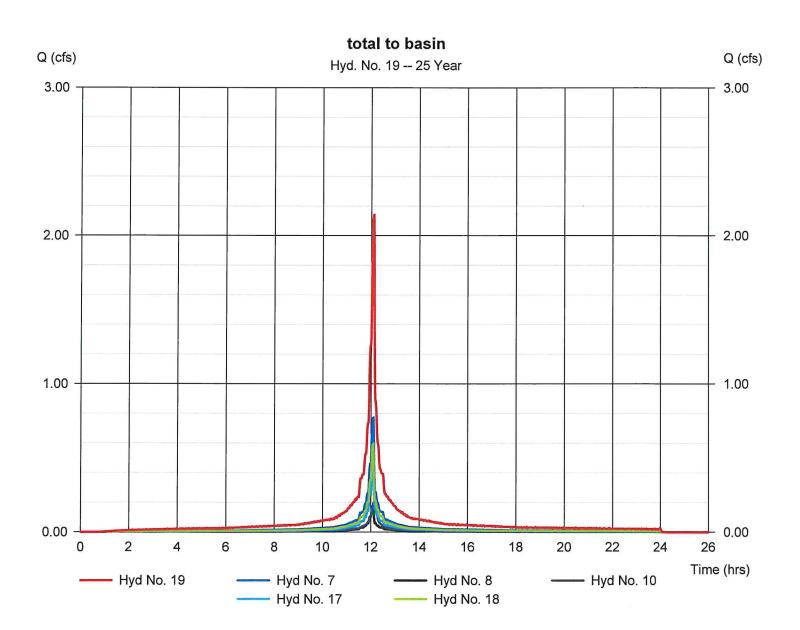
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Hyd. No. 18

CB-4 total

Hydrograph type	= Combine	Peak discharge	= 0.593 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 1,760 cuft
Inflow byds	= 15, 16	Contrib, drain, area	= 0.110 ac
Inflow hyds.	= 15, 16	Contrib. drain. area	= 0.110 ac

CB-4 total

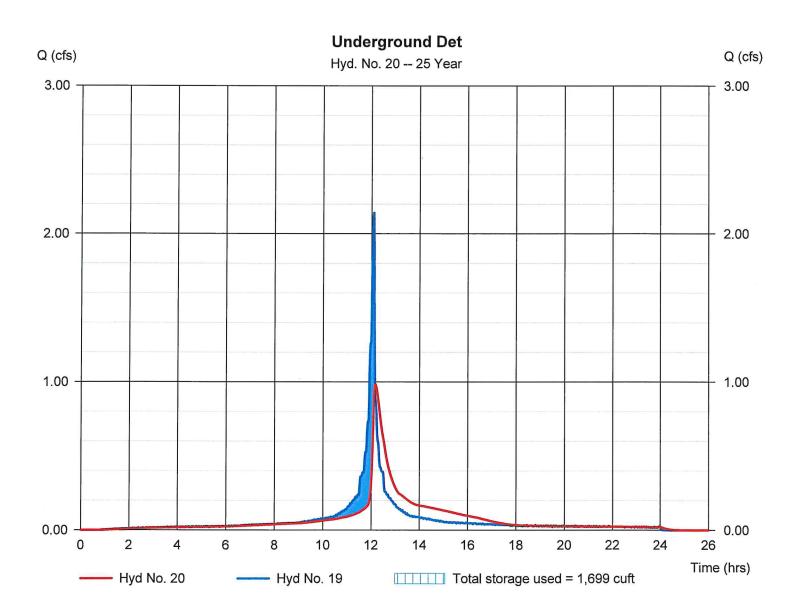


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 19

total to basin

Hydrograph type	= Combine	Peak discharge	= 2.147 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 6,518 cuft
Inflow hyds.	= 7, 8, 10, 17, 18	Contrib. drain. area	= 0.070 ac

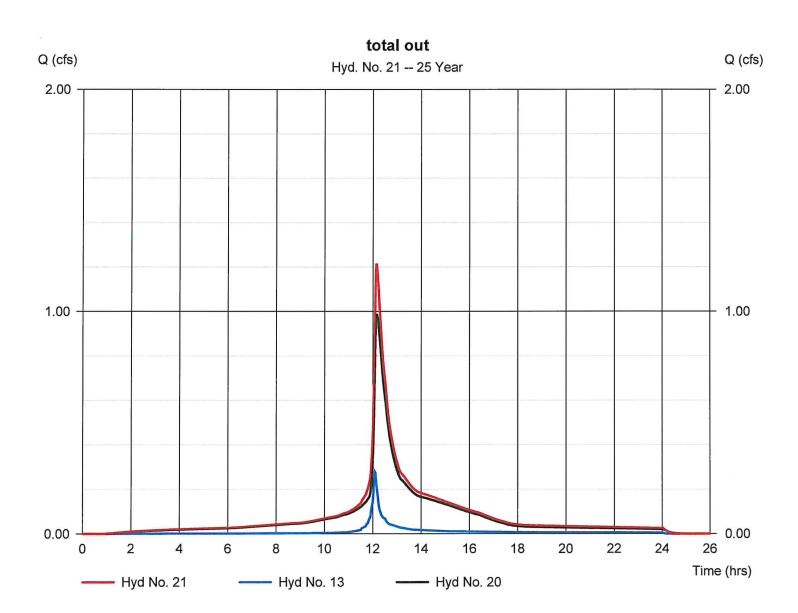

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 20

Underground Det

Hydrograph type	= Reservoir	Peak discharge	= 0.984 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.15 hrs
Time interval	= 1 min	Hyd. volume	= 6,517 cuft
Inflow hyd. No.	= 19 - total to basin	Max. Elevation	= 124.13 ft
Reservoir name	= Det Basin	Max. Storage	= 1,699 cuft

Storage Indication method used.



73

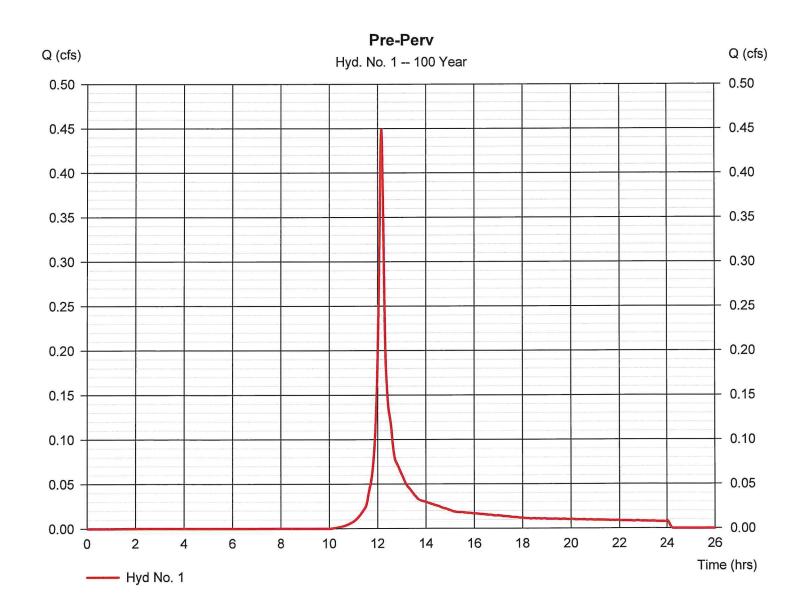
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 21

total out

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

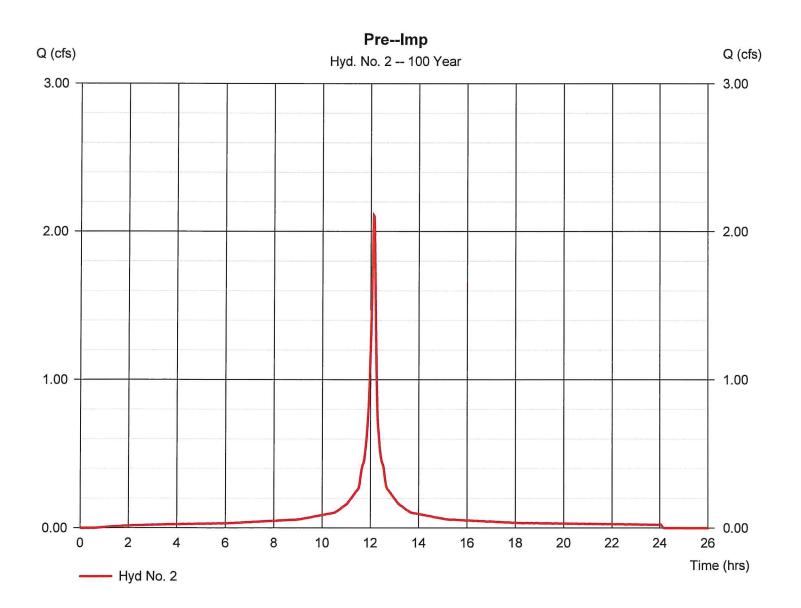

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.450	1	729	1,410				Pre-Perv
2	SCS Runoff	2.106	1	727	7,285				PreImp
3	SCS Runoff	0.496	1	728	1,514				Pre-gravel
4	Combine	3.039	1	728	10,209	1, 2, 3			Pre-total
5	SCS Runoff	0.039	1	726	94				CB-2 perv
6	SCS Runoff	1.016	1	726	3,035				CB-2 Imp
7	Combine	1.055	1	726	3,130	5, 6			CB-2 total
8	SCS Runoff	0.234	1	726	700				CB-1 Imp
9	SCS Runoff	0.547	1	726	1,634				CB-3 Imp
10	SCS Runoff	0.272	1	728	996				Dunkin Bldg
11	SCS Runoff	0.336	1	728	982				Bypass-Perv
12	SCS Runoff	0.156	1	726	467				Bypass-Imp
13	Combine	0.467	1	726	1,449	11, 12			Bypass Total
14	SCS Runoff	0.040	1	726	101				CB-3 perv
15	SCS Runoff	0.781	1	726	2,335				cb-4 Imp
16	SCS Runoff	0.034	1	728	98				CB-4 perv
17	Combine	0.587	1	726	1,735	9, 14,			CB-3 total
18	Combine	0.813	1	726	2,433	15, 16,			CB-4 total
19	Combine	2.941	1	726	8,994	7, 8, 10,			total to basin
20	Reservoir	1.678	1	729	8,994	17, 18 19	124.61	2,149	Underground Det
21	Combine	2.105	1	728	10,442	13, 20			total out
scs	5 Dunkin 9-1-2	2021.gpw	·		Return P	eriod: 100	Year	Thursday, (09 / 16 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

Pre-Perv

Hydrograph type	= SCS Runoff	Peak discharge	= 0.450 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.15 hrs
Time interval	= 1 min	Hyd. volume	= 1,410 cuft
Drainage area	= 0.140 ac	Curve number	= 61
Basin Slope	= 0.1 %	Hydraulic length	= 198 ft
Tc method	= KIRPICH	Time of conc. (Tc)	= 8.54 min
Total precip.	= 7.10 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-M	11NSbdpe factor	= 484

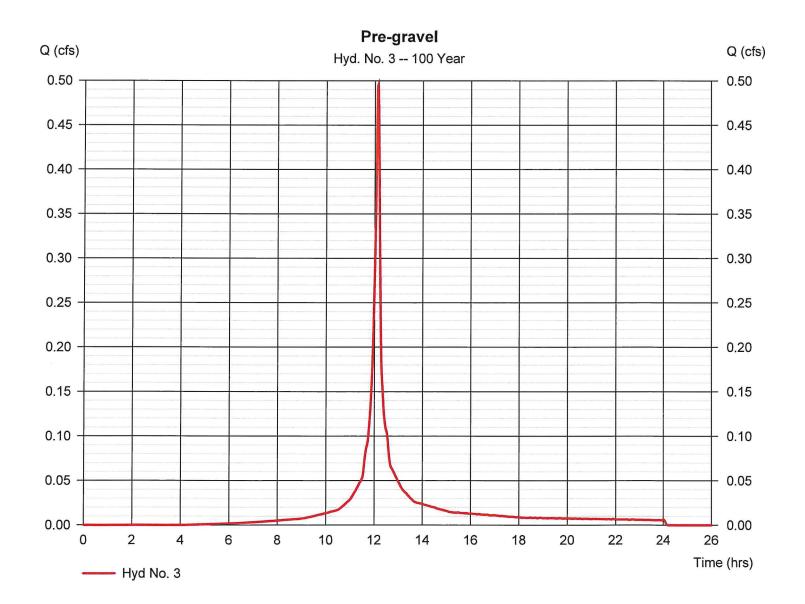


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 2

Pre--Imp

Hydrograph type	= SCS Runoff	Peak discharge	= 2.106 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.12 hrs
Time interval	= 1 min	Hyd. volume	= 7,285 cuft
Drainage area	= 0.300 ac	Curve number	= 98
Basin Slope	= 0.1 %	Hydraulic length	= 178 ft
Tc method	= KIRPICH	Time of conc. (Tc)	= 7.87 min
Total precip.	= 7.10 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA C 1-M	IINSbdpe factor	= 484
		•	

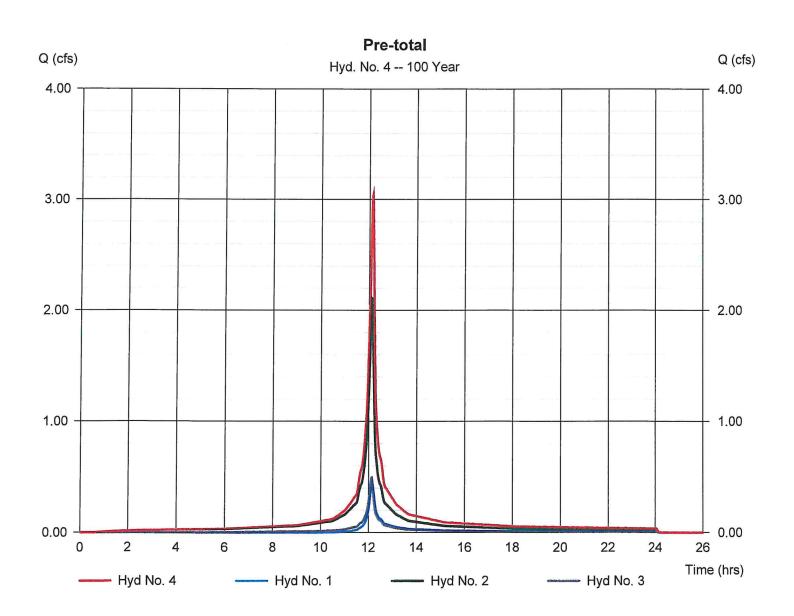

77

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

Pre-gravel

Hydrograph type	= SCS Runoff	Peak discharge	= 0.496 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 1,514 cuft
Drainage area	= 0.080 ac	Curve number	= 85
Basin Slope	= 0.1 %	Hydraulic length	= 178 ft
Tc method	= KIRPICH	Time of conc. (Tc)	= 7.87 min
Total precip.	= 7.10 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-M	11NSbdpe factor	= 484
		-	

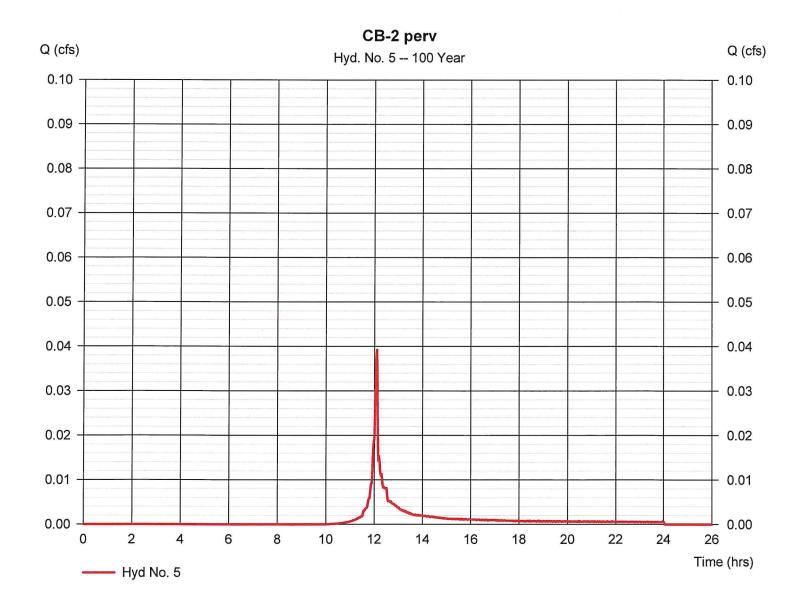

78

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

Pre-total

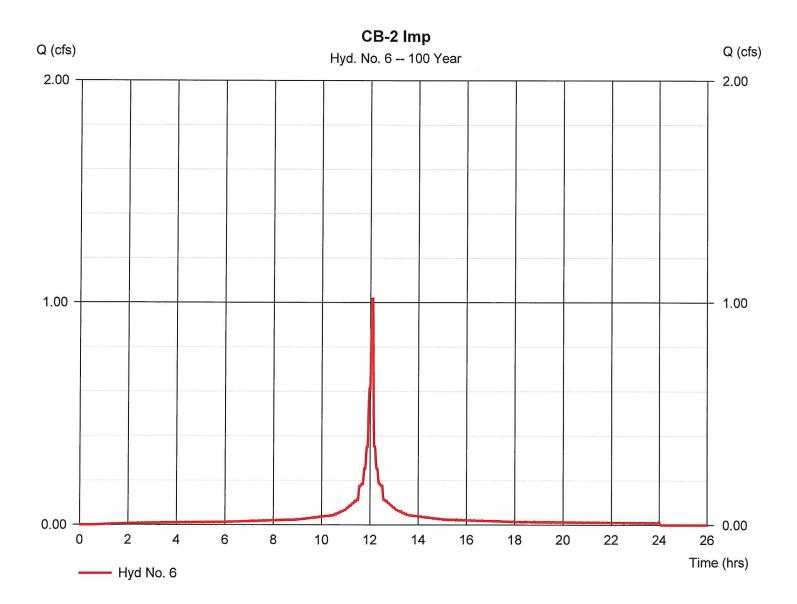
Hydrograph type	= Combine	Peak discharge	= 3.039 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.13 hrs
Time interval	$= 1 \min$	Hyd. volume	= 10,209 cuft
Inflow hyds.	= 1, 2, 3	Contrib. drain. area	= 0.520 ac



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

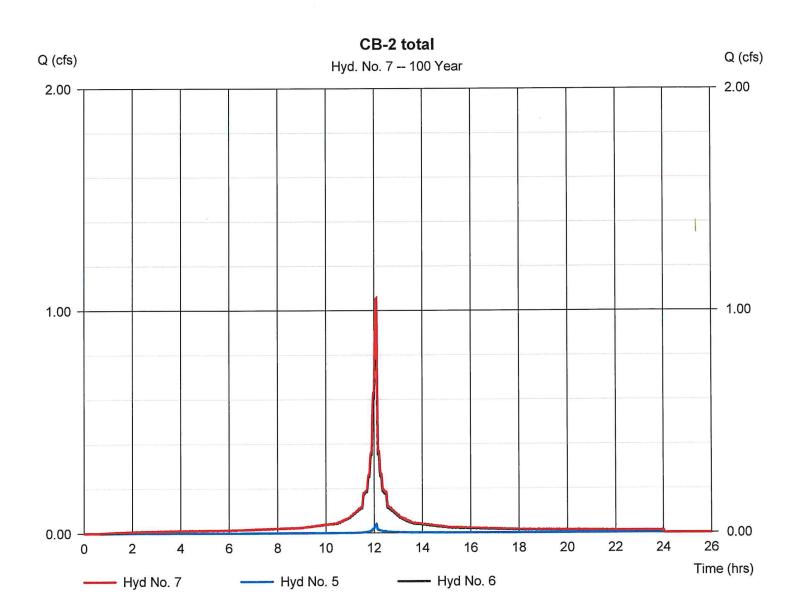
CB-2 perv


Hydrograph type	= SCS Runoff	Peak discharge	= 0.039 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 94 cuft
Drainage area	= 0.010 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 2.83 min
Total precip.	= 7.10 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-N	/INSbdpe factor	= 484
		-	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 6

CB-2 Imp

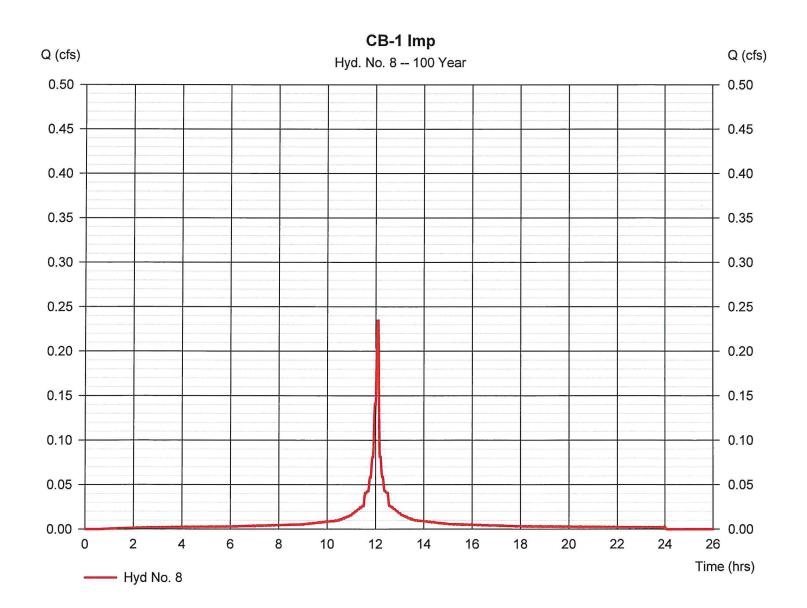


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 7

CB-2 total

Hydrograph type	= Combine	Peak discharge	= 1.055 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 3,130 cuft
Inflow hyds.	= 5, 6	Contrib. drain. area	= 0.140 ac

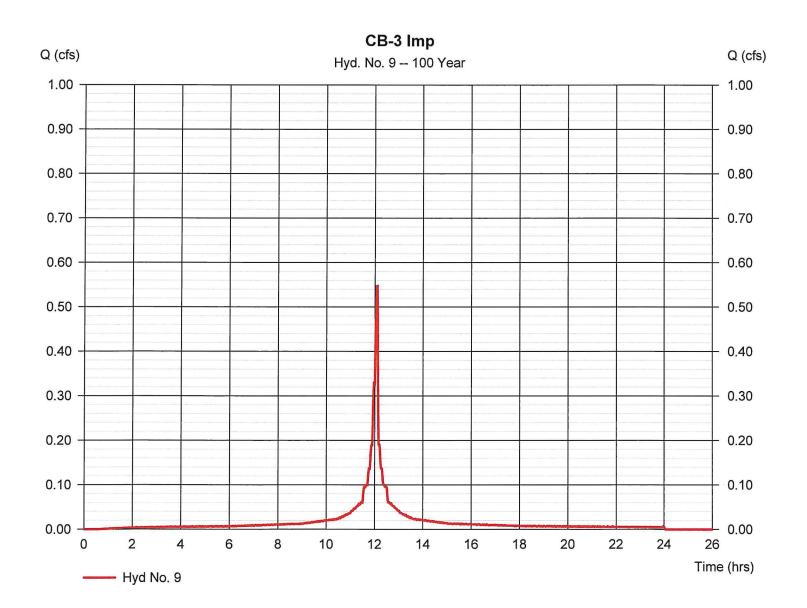


82

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

CB-1 Imp

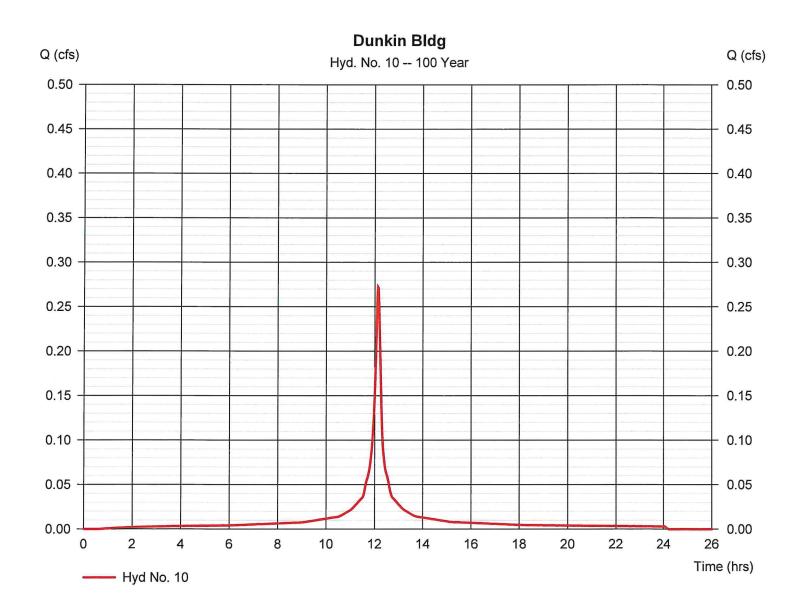


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 9

CB-3 Imp

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip.	 SCS Runoff 100 yrs 1 min 0.070 ac 0.0 % User 7.10 in 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution	 = 0.547 cfs = 12.10 hrs = 1,634 cuft = 98 = 0 ft = 2.00 min = Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-N		= 484

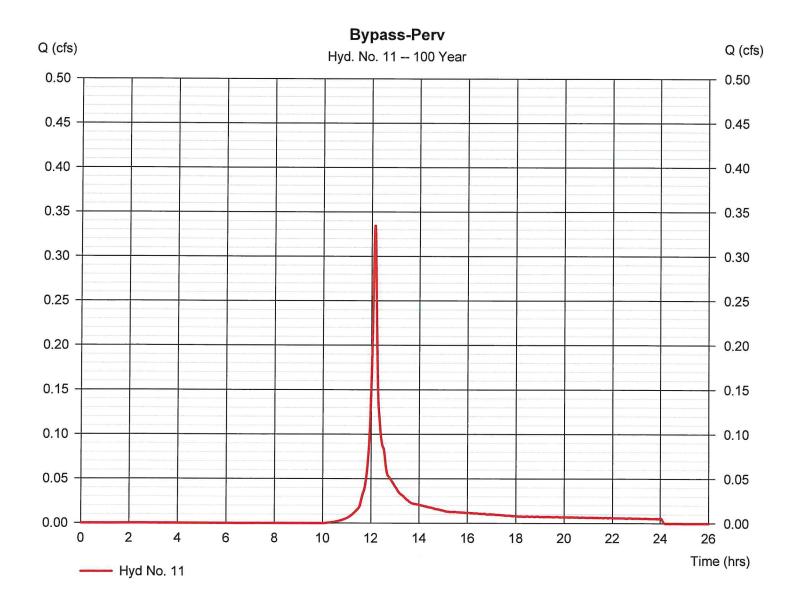


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

Dunkin Bldg

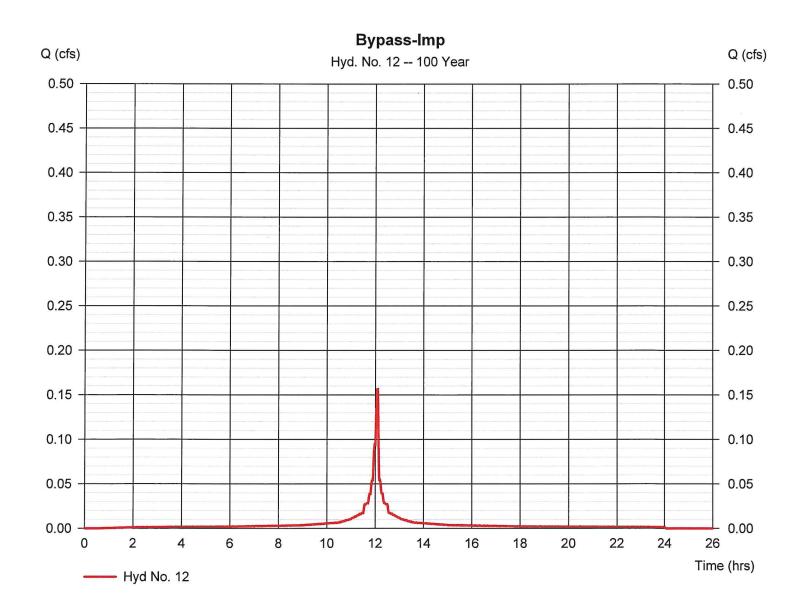
Hydrograph type	= SCS Runoff	Peak discharge	= 0.272 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 996 cuft
Drainage area	= 0.040 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 7.10 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA C 1-M	11NSbdpe factor	= 484
	= =		


85

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

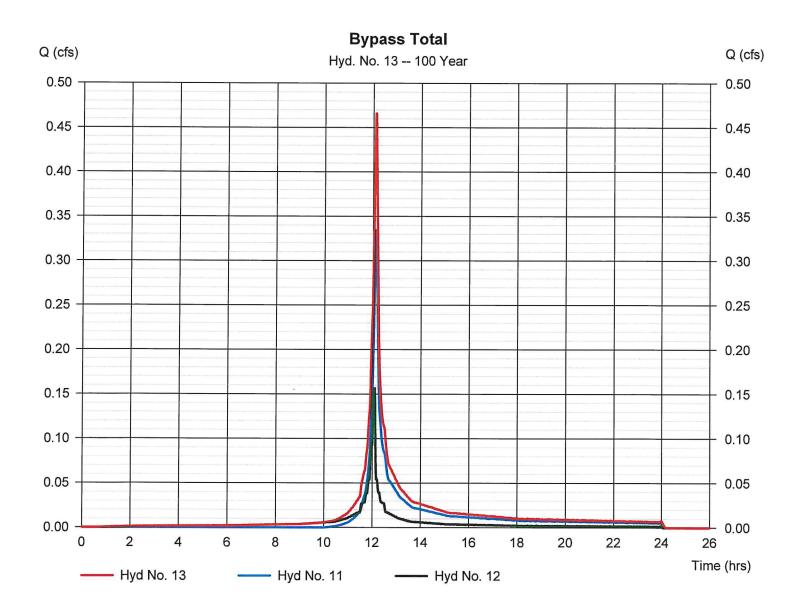
Bypass-Perv


Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip.	 SCS Runoff 100 yrs 1 min 0.100 ac 0.0 % TR55 7.10 in 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution	 = 0.336 cfs = 12.13 hrs = 982 cuft = 61 = 0 ft = 7.80 min = Custom
Total precip.	= 7.10 in		= Custom
Storm duration	= Z:\Stormwater\NOAA_C_1-M		= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

Bypass-Imp

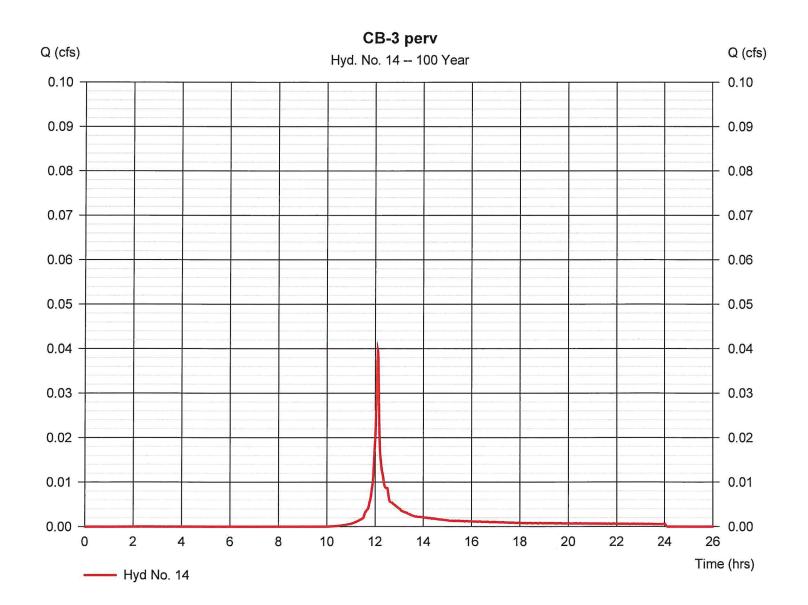


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Bypass Total

Hydrograph type	= Combine	Peak discharge	= 0.467 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 1,449 cuft
Inflow hyds.	= 11, 12	Contrib. drain. area	= 0.120 ac
Inflow hyds.	= 11, 12	Contrib. drain. area	= 0.120 ac

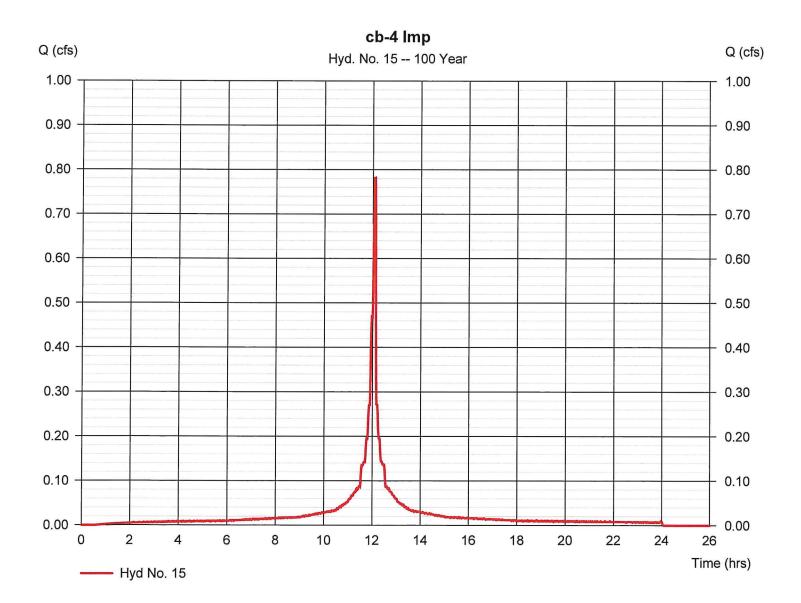


88

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

CB-3 perv

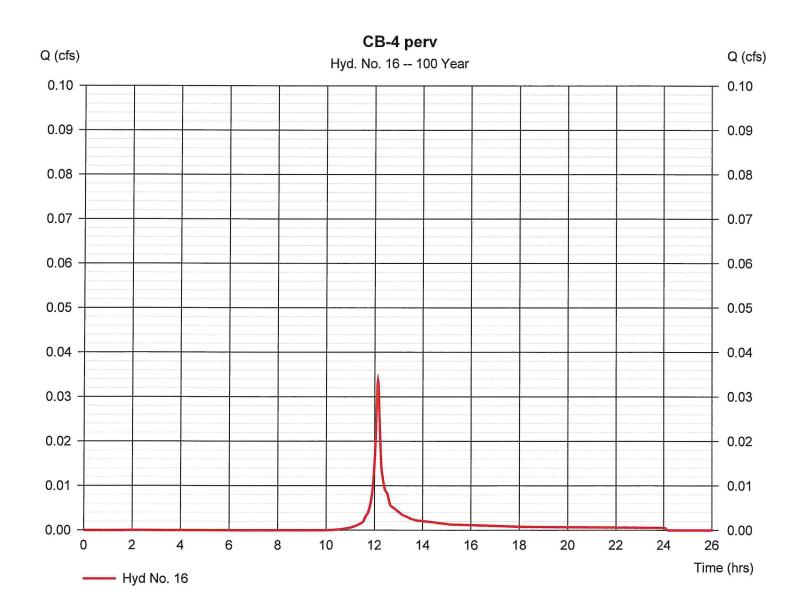


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 15

cb-4 Imp

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip. Storm duration	 SCS Runoff 100 yrs 1 min 0.100 ac 0.0 % User 7.10 in Z:\Stormwater\NOAA_C_1-M 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution	 = 0.781 cfs = 12.10 hrs = 2,335 cuft = 98 = 0 ft = 2.00 min = Custom = 484
Storm duration	= Z:\Stormwater\NOAA_C_1-N	IINSbdpe factor	= 484
Basin Slope Tc method	= 0.0 % = User = 7.10 in	Hydraulic length Time of conc. (Tc) Distribution	= 0 ft = 2.00 min = Custom

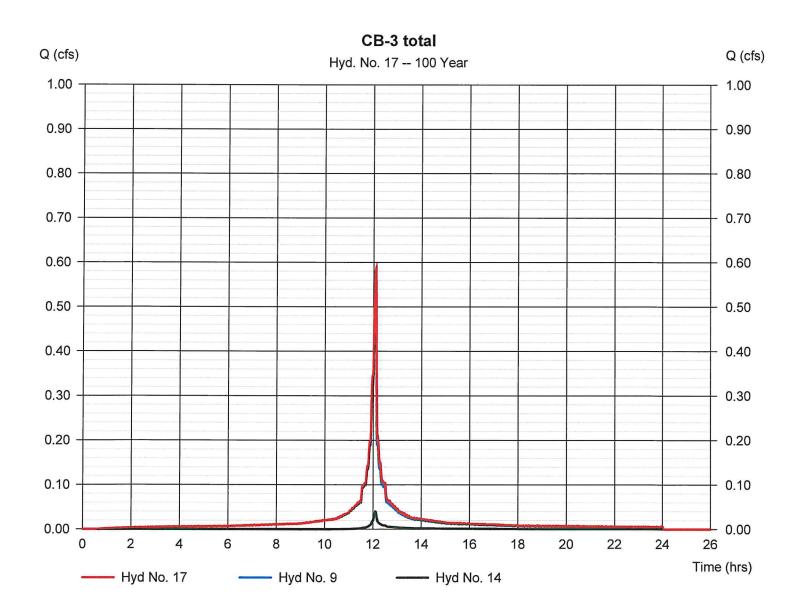


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 16

CB-4 perv

Hydrograph type	= SCS Runoff	Peak discharge	= 0.034 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 98 cuft
Drainage area	= 0.010 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 7.70 min
Total precip.	= 7.10 in	Distribution	= Custom
Storm duration	= Z:\Stormwater\NOAA C 1-M	IINSbdpe factor	= 484

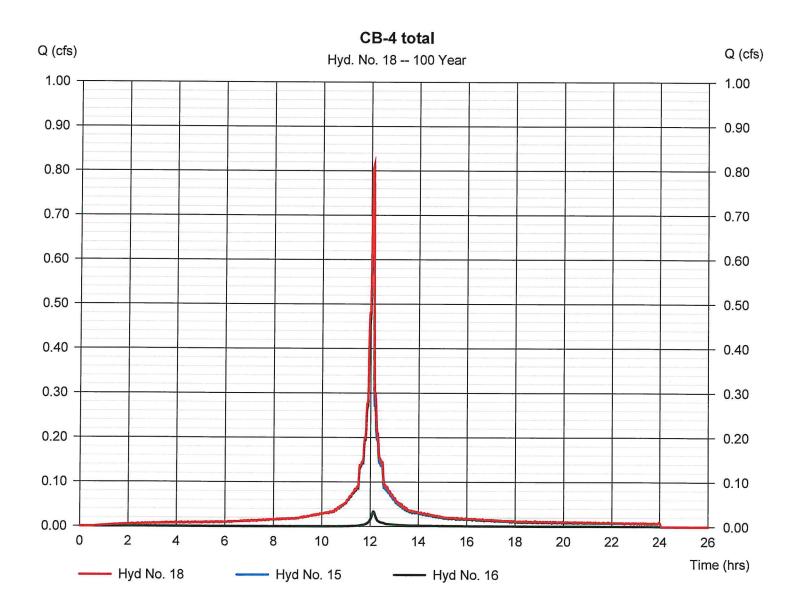


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 17

CB-3 total

Hydrograph type	= Combine	Peak discharge	= 0.587 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 1,735 cuft
Inflow hyds.	= 9, 14	Contrib. drain. area	= 0.080 ac

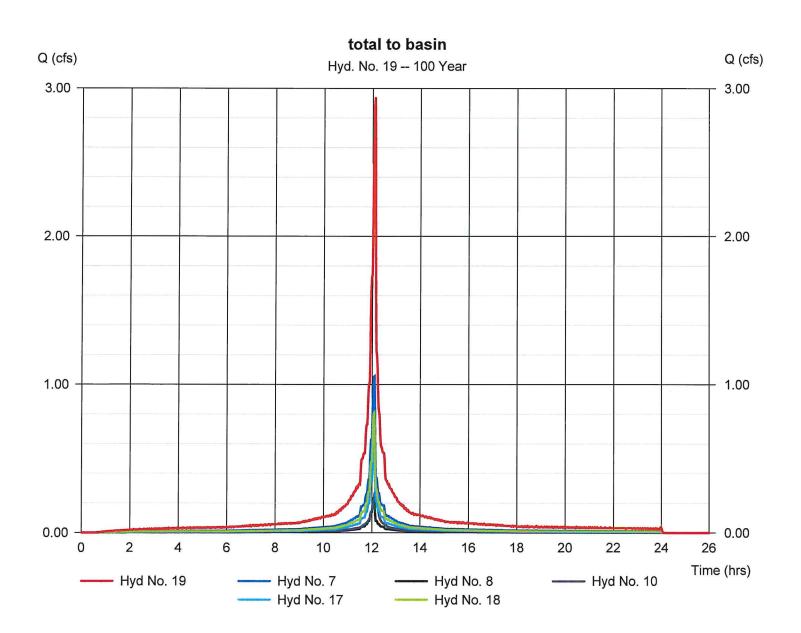


92

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 18

CB-4 total

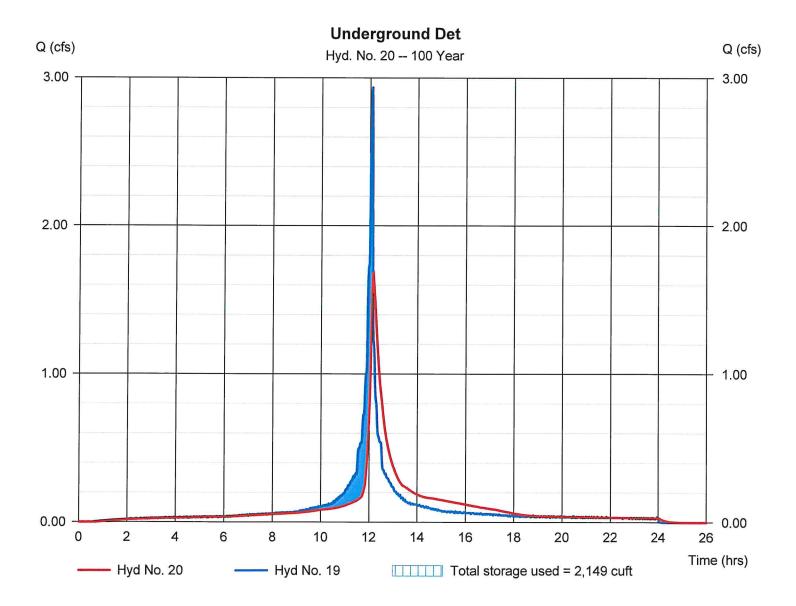


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 19

total to basin

Hydrograph type	= Combine	Peak discharge	= 2.941 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 1 min	Hyd. volume	= 8,994 cuft
Inflow hyds.	= 7, 8, 10, 17, 18	Contrib. drain. area	= 0.070 ac

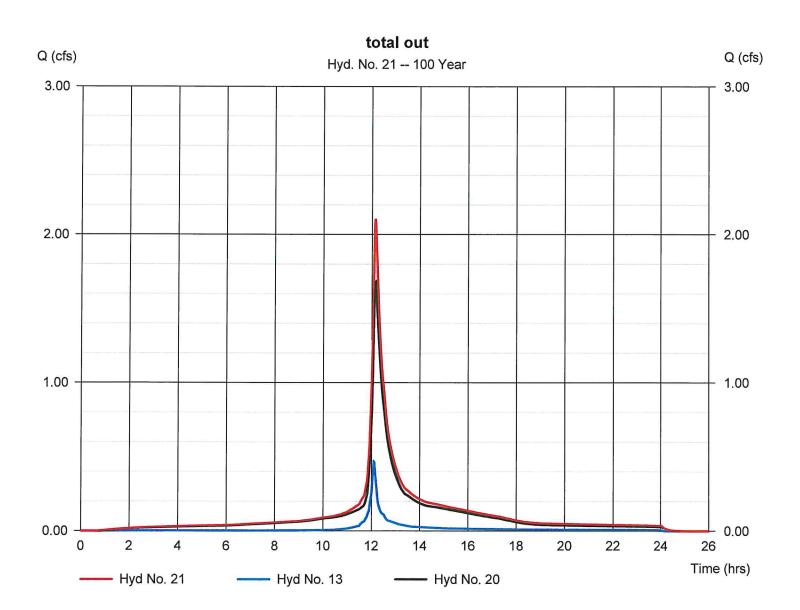

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 20

Underground Det

Hydrograph type Storm frequency Time interval Inflow hyd. No. Reservoir name	 Reservoir 100 yrs 1 min 19 - total to basin Det Basin 	Peak discharge Time to peak Hyd. volume Max. Elevation Max. Storage	 = 1.678 cfs = 12.15 hrs = 8,994 cuft = 124.61 ft = 2,149 cuft
Reservoir name	= Det Basin	Max. Storage	= 2,149 cuft

Storage Indication method used.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 21

total out

Hydrograph type Storm frequency	= Combine = 100 yrs	Peak discharge Time to peak	= 2.105 cfs = 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 12.13 ms $= 10,442$ cuft
Inflow hyds.	= 13, 20	Contrib. drain. area	= 0.000 ac

96

APPENDIX E

BASIN ROUTING ANALYSIS

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Pond No. 1 - Det Basin

Pond Data

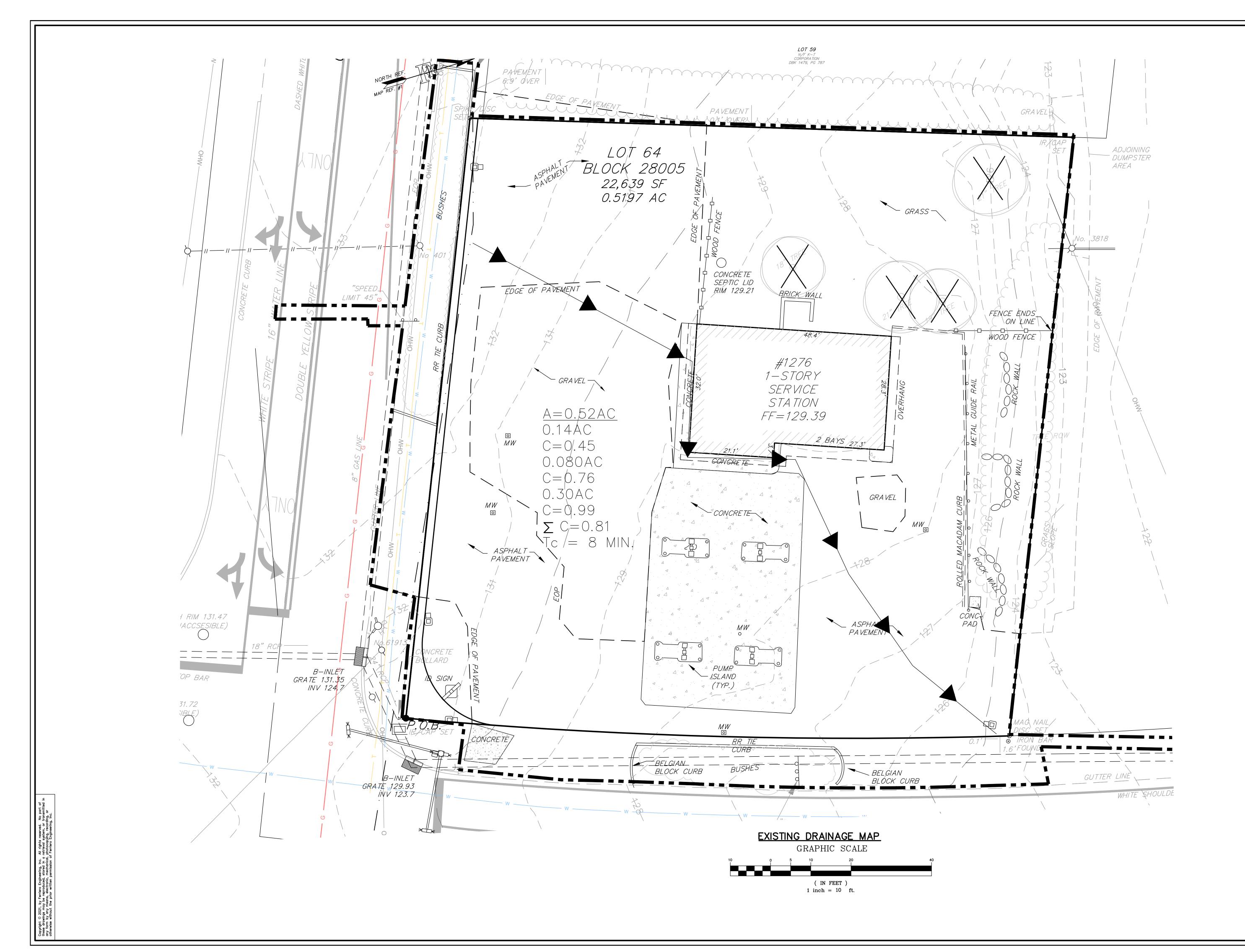
UG Chambers -Invert elev. = 122.20 ft, Rise x Span = 3.00 x 3.00 ft, Barrel Len = 80.00 ft, No. Barrels = 4, Slope = 0.00%, Headers = Yes

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	122.20	n/a	0	0
0.30	122.50	n/a	130	130
0.60	122.80	n/a	225	356
0.90	123.10	n/a	274	630
1.20	123.40	n/a	302	932
1.50	123.70	n/a	316	1,248
1.80	124.00	n/a	316	1,564
2.10	124.30	n/a	302	1,866
2.40	124.60	n/a	274	2,140
2.70	124.90	n/a	225	2,366
3.00	125.20	n/a	130	2,496

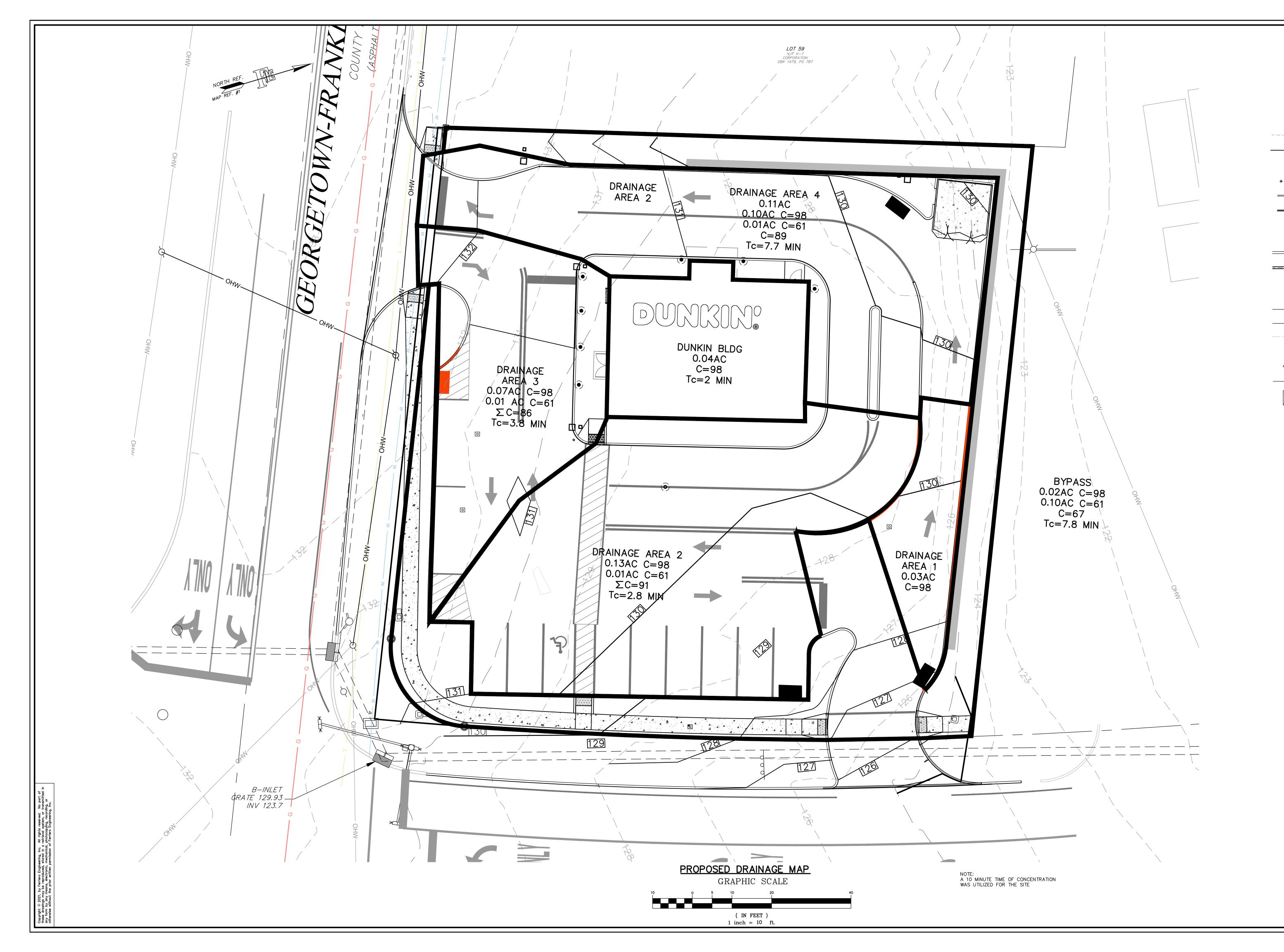
Culvert / Orifice Structures

Weir Structures


	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 15.00	3.00	0.00	0.00	Crest Len (ft)	= 0.25	5.00	Inactive	0.00
Span (in)	= 15.00	3.00	0.00	0.00	Crest El. (ft)	= 123.20	124.80	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	2.60	2.60	3.33
Invert El. (ft)	= 121.90	122.13	0.00	0.00	Weir Type	= Rect	Broad	Broad	
Length (ft)	= 7.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.01	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			÷

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

		i ge i	4010										
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	122.20	0.00	0.00			0.00	0.00					0.000
0.30	130	122.50	0.09 oc	0.09 ic			0.00	0.00					0.085
0.60	356	122.80	0.13 oc	0.12 ic			0.00	0.00					0.124
0.90	630	123.10	0.16 oc	0.16 ic			0.00	0.00					0.158
1.20	932	123.40	0.23 oc	0.15 ic			0.07	0.00					0.229
1.50	1,248	123.70	0.47 oc	0.17 ic			0.29	0.00					0.469
1.80	1,564	124.00	0.82 oc	0.22 ic			0.60	0.00			7 		0.812
2.10	1,866	124.30	1.21 oc	0.25 ic			0.96	0.00		-			1.211
2.40	2,140	124.60	1.66 oc	0.28 ic			1.38	0.00					1.659
2.70	2,366	124.90	2.56 oc	0.30 ic			1.84 s	0.41					2.554
3.00	2,496	125.20	5.80 oc	0.29 ic	-		2.23 s	3.29					5.803


APPENDIX F

DRAINAGE AREA MAPS

<u>LEGEND</u>

<u>L</u> E	<u>EGEND</u>
	EXISTING CONTOUR LINE
520	PROPOSED CONTOUR LINE
516.3 ×	EXISTING SPOT GRADE
+ 640.00	PROPOSED SPOT GRADE
	EXISTING CURB LINE
	PROPOSED CURB LINE
	EXISTING INLET
	PROPOSED INLET
	EXISTING STORM/SAN PIPE
	PROPOSED STORM SEWER
*	EXISTING SITE LIGHT
П	PROPOSED SITE LIGHT
<i>G</i>	EXISTING GAS LINE
<i>W</i>	EXISTING WATER LINE
	EXISTING OVERHEAD WIRE
\bigcirc	EXISTING UTILITY POLE
	EXISTING STONE WALL
××	EXISTING FENCE
	PROPOSED CONCRETE
	EXISTING SITE LIGHT
	PROPOSED SITE LIGHT
NO. DATE DRAWN BY: S	
	as noted File:
	1046/DWG/BASEMAPS/BASEMAP9-9-2020
	AUL W. FERRIERO
	OFESSIONAL ENGINEER 0. <u>GE32978</u>
2	
ាត្	 എന്ന്നി
<u>IEmer</u>	erring, Inc.
_	N STREET P.O. BOX 571
	R STREET P.O. BOX 571 R, NEW JERSEY 07930 908–879–6209
CERTIFICATE	908-879-0209 OF AUTHORIZATION 24GA27935400
EXIST	ING DRAINAGE MAP
D	INKIN.
	64 BLOCK 28005
MONTO	SOMERY TOWNSHIP IERSET COUNTY NEW JERSEY
MONTO	OMERY TOWNSHIP
MONTO	SOMERY TOWNSHIP IERSET COUNTY NEW JERSEY

	EXISTING CONTOUR LINE
520	PROPOSED CONTOUR LINE
516.3 ×	EXISTING SPOT GRADE
⊦ 640.00	PROPOSED SPOT GRADE
	EXISTING CURB LINE
	PROPOSED CURB LINE
	EXISTING INLET
	PROPOSED INLET
	EXISTING STORM/SAN PIPE
	,
	PROPOSED STORM SEWER
	EXISTING SITE LIGHT
\forall	PROPOSED SITE LIGHT
<i>G</i>	EXISTING GAS LINE
<i>W</i>	EXISTING WATER LINE
	EXISTING OVERHEAD WIRE
(\bigcirc)	EXISTING UTILITY POLE
$\infty \infty \infty \infty \infty$	EXISTING STONE WALL
——————————————————————————————————————	EXISTING FENCE
	PROPOSED CONCRETE
	EXISTING SITE LIGHT
	PROPOSED SITE LIGHT
	REVISION
NO. DATE DRAWN BY: SO	
DRAWN BY: SC AMH A	
DRAWN BY: SO AMH A CHKD BY: F	cale: Field Book: .s noted
DRAWN BY: SO AMH A CHKD BY: F	cale: Field Book: S Noted Ille:
DRAWN BY: SO AMH A CHKD BY: F	cale: Field Book: S Noted Ille:
DRAWN BY: SC AMH A CHKD BY: F PWF 141	CALE: FIELD BOOK: S NOTED ILE: 1046/DWG/BASEMAPS/BASEMAP9-9-2020
DRAWN BY: SC AMH A CHKD BY: F PWF 141 PWF 141 N.J. PR	CALE: FIELD BOOK: IS NOTED ILE: 1046/DWG/BASEMAPS/BASEMAP9-9-2020
DRAWN BY: SC AMH A CHKD BY: F PWF 141 PWF 141 N.J. PR	CALE: FIELD BOOK: IS NOTED ILE: 1046/DWG/BASEMAPS/BASEMAP9-9-2020 AUL W. FERRIERO OFESSIONAL ENGINEER
DRAWN BY: SC AMH A CHKD BY: F PWF 44 PWF 44 N.J. PR N.J. PR	CALE: FIELD BOOK: IS NOTED ILE: 1046/DWG/BASEMAPS/BASEMAP9-9-2020 AUL W. FERRIERO OFESSIONAL ENGINEER
DRAWN BY: SC AMH A CHKD BY: F PWF 441 N.J. PR N.J. PR	AUL W. FERRIERO OFESSIONAL ENGINEER D. <u>GE32978</u>
DRAWN BY: SC AMH A CHKD BY: F PWF 441 N.J. PR N.J. PR	CALE: FIELD BOOK: S NOTED ILE: 1046/DWG/BASEMAPS/BASEMAP9-9-2020 AUL W. FERRIERO OFESSIONAL ENGINEER D. <u>GE32978</u>
DRAWN BY: SC AMH A CHKD BY: F PWF 441 N.J. PR N.J. PR N.J. PR N.C	ALE: S NOTED FIELD BOOK: S NOTED FIELD F
DRAWN BY: SC AMH A CHKD BY: F PWF 441 N.J. PR4 N.J. PR4 NC IEINGI 180 MAIN	ALE: S NOTED FIELD BOOK: S NOTED FIELD S S NOTED
DRAWN BY: SC AMH A CHKD BY: F PWF 44 N.J. PR N.J. PR N.J. 180 MAIN CHESTE	CALE: FIELD BOOK: S NOTED FIELD BOOK: S NOTED FIELD BOOK: ILE: 1046/DWG/BASEMAPS/BASEMAP9-9-2020 AUL W. FERRIERO OFESSIONAL ENGINEER D. GE32978 STREET P.O. BOX 571
DRAWN BY: SC AMH A CHKD BY: F PWF 44 N.J. PR N.J. PR N.J. PR N.J. PA N.J. PR N.C EDD T 180 MAIN CHESTE CERTIFICATE C	CALE: FIELD BOOK: S NOTED FIELD BOOK: ILE: 1046/DWG/BASEMAPS/BASEMAP9-9-2020 AUL W. FERRIERO OFESSIONAL ENGINEER D. GE32978 COFESSIONAL ENGINEER D. GE32978 COFERSIONAL ENGINEER D. GE32978 COFESSIONAL ENGINEER D. GE32978 COFESSION ENGLISH D. GE329 D. GE329 D. GE329 D. GE329 D. GE329
DRAWN BY: SC AMH A CHKD BY: F PWF 44 N.J. PR N.J. PR N.J. PR N.J. PA N.J. PR N.C EDD T 180 MAIN CHESTE CERTIFICATE C	ALE: S NOTED FIELD BOOK: S NOTED FIELD S FIELD BOOK: S NOTED FIELD S FIELD S FIEL
DRAWN BY: SC AMH CHKD BY: F PWF N.J. PR N.J. PR N.J. PR N.J. PA N.J. PR N.C PROPC	CALE: S NOTED FIELD BOOK: S NOTED FILE: NO46/DWG/BASEMAPS/BASEMAP9-9-2020 AUL W. FERRIERO OFESSIONAL ENGINEER D. GE32978 CFESSIONAL ENGINEER D. GE32978 CF
DRAWN BY: SC AMH CHKD BY: F PWF N.J. PR N.J. PR N.J. PR N.J. PR N.J. PR N.C PROPC	ALE: S NOTED ILE: 1046/DWG/BASEMAPS/BASEMAP9-9-2020 AUL W. FERRIERO OFESSIONAL ENGINEER D. GE32978 CFESSIONAL ENGINEER D. GE
DRAWN BY: SC AMH CHKD BY: F PWF A N.J. PR N.J. PR N.J. PR N.J. PA N.J. PR N.J. PA N.J. PR N.J. PROPC	ALE: S NOTED ILE: 1046/DWG/BASEMAPS/BASEMAP9-9-2020 AUL W. FERRIERO OFESSIONAL ENGINEER D. GE32978 CFESSIONAL ENGINEER D. GE32978 CFESSIONAL ENGINEER D. GE32978 CFESSIONAL ENGINEER DESCRIPTION STREET R, NEW JERSEY 07930 908-879-6209 DF AUTHORIZATION 24GA27935400 CSED DRAINAGE MAP
DRAWN BY: SC AMH CHKD BY: F PWF A N.J. PR N.J. PR N.J. PR N.J. PA N.J. PR N.J. PA N.J. PR N.J. PROPC	ALE: FIELD BOOK: S NOTED TILE: TO48/DWG/BASEMAPS/BASEMAP9-9-2020 AUL W. FERRIERO OFESSIONAL ENGINEER D. <u>GE32978</u> CE32978
DRAWN BY: SC AMH CHKD BY: F PWF A N.J. PR N.J. PR N.J. PR N.J. PA N.J. PR N.J. PA N.J. PR N.J. PROPC	ALE: S NOTED FIELD BOOK: S NOTED TILE: 1046/DWG/BASEMAPS/BASEMAP9-9-2020 AUL W. FERRIERO OFESSIONAL ENGINEER DESSIONAL ENGINEER CE32978 COFESSIONAL ENGINEER DESSIONAL ENGINER DESSIONAL ENGINEER DESSIONAL ENGINER DESSIONAL ENGINEER D